Старшая степень остатка R1(x) не превосходит величины (n-k‑1), а всего второго слагаемого в (4) – величины (n-ℓ-1). Такую же степень имеет и третье слагаемое А`1(х) х(n-k). Сложим эти два последних члена, сумму обозначим F1(х). Перепишем (4) в следующем виде:
А(х) х(n-k) =Q1(х) G(x) х(k-ℓ) +F1(х) (5)
Рис. 1 иллюстрирует формирование последовательности F1в векторной интерпретации всех участвующих величин. Обратим внимание на длину последовательности F1, на то обстоятельство, что при суммировании векторы R1 и A`1«выровнены» со стороны старших разрядов, а F1имеет справа (n-k) нулевых бит.
Рис. 1. Формирование последовательности F1при векторном представлении величин
На этом первый шаг алгоритма деления по частям закончен. Получен F1(х), куда вошел первый промежуточный остаток R1(x), контролирующий деление первого блока из ℓ левых бит входной последовательности А(х).
Шаг 2
Очередной шаг алгоритма заключается в том, что в F1(х) выделяем ℓ левых бит. Этот отрезок должен быть обозначен А2(х). Оставшаяся правая часть F1(х) – это А`2(х). В соответствии с (3), (4) находим выражение остатка R2(x) и последовательности F2(х).
Рис. 2. Формирование последовательности F2при векторном представлении величин
На рис. 2 проиллюстрировано получение F2. Предпринята попытка масштабно отобразить изменение участвующих в деле векторов. Здесь показано, что после второго шага F2все еще имеет справа (n-k) нулей. Это эквивалентно допущению, что деление входного вектора А на отрезки длины ℓ двумя шагами не исчерпывается.
Делимое (в его стартовом понимании) после второго шага имеет вид:
(6)В общем случае, пока (k-iℓ)≥(n-k) вектор Fiдолжен будет иметь справа (n-k) нулей. Это, как известно, место контрольных бит в словах циклического кодового слова. Они пока не сформированы.
Шаг s‑1
В процессе выполнения (s‑1) – го шага мы оперируем векторами длины (n-k+m0) (см. рис. 3). К этому времени все отрезки длины ℓ в составе входного вектора будут исчерпаны и (если в общем случае k не делится нацело на ℓ) у нас остаётся от входной последовательности вычисленный остаток Rs-1 и «правый» отрезок A`s-1длины m0<ℓ.
В соответствии с выражениями (4) и (5) получим «выходной продукт» данного шага – многочлен Fs-1(х) = Rs-1(x) x(k-(s-1)ℓ) + A`s-1 (х) х(n-k) =Rs-1(x) x(m0) + A`s-1 (х) х(n-k), т. к. k=(s‑1)ℓ+m0по определению этих величин.
Рис. 3. Формирование последовательности Fs-1при векторном представлении величин
Обозначим последние формирующиеся (n-k) бит Y(х). Как мы видели до (s‑1) – го шага Y(х)=0. Следовательно, Y(х) можно ввести в (6) как нулевое слагаемое, если пределы суммирования ограничить величиной (s-u‑1). После шага s можно записать
(7)Здесь
т.е. является проверочными битами кодового слова.7.2 Алгоритм кодирования
Известно на старте:
– длина выходных кодовых слов n;
– длина входной последовательности k;
– число контрольных бит (n-k)=r;
– порождающий многочлен G(x);
Назначается величина ℓ≤ r. Вычисляются параметры s и m0. В памяти машины организуется 2ℓ строк («мест»). В каждую строку для каждой конфигурации двоичного отрезка длины ℓ пишется остаток, вычисленный заранее по изложенному выше алгоритму. В процессе кодирования процедура деления заменяется считыванием из памяти остатка для очередного ℓ-отрезка кодируемой последовательности. Это существенно повышает быстродействие программного кодера при (обычно) приемлемом расходе памяти. Желательно так писать программу, чтобы ℓ-отрезок мог выступать в роли «смещения» по адресному пространству списка остатков.
Алгоритм кодирования сводится к следующему.
1. Из исходной k‑битовой информационной последовательности со стороны левых («старших») разрядов выделяется отрезок длины ℓ и из таблицы выбирается соответствующий ему остаток.
2. Полученный остаток суммируется по mod2 с левыми разрядами оставшейся части блока длиной (k-ℓ) бит.
3. Из полученной суммы со стороны левых разрядов выделяется очередной ℓ-отрезок, для которого из таблицы считывается соответствующий остаток и т.д.
4. Через (s‑1) таких шагов из полученной суммы выделяются m0 старших разрядов ℓ-m0и для сформированной ℓ-разрядной комбинации выбирается соответствующий остаток из таблицы.
5. Полученный остаток суммируется по mod2 с оставшимися (после выделения m0 разрядов) битами. Эта сумма является комбинацией проверочных разрядов циклического кода.
8. Содержательный пример [3]
Методом деления по частям построить кодер для циклического (15,11) – кода, заданного порождающим многочленом G(x)=х4+х+1.
Здесь n=15; k=11. Выбираем ℓ=4. Тогда s=3, m0=3. Всего имеем 2ℓ различных конфигураций ℓ-отрезков. Остатки, соответствующие этим отрезкам, вычисленные в соответствии с алгоритмом деления по частям, приведены в табл. 1.
Пусть входная (информационная) последовательность, разделенная на отрезки, имеет вид: 1101 1000 110
Выбираем первый ℓ-отрезок 1101 и выбираем из таблицы соответствующий остаток 0100. Складываем по mod2 со следующим отрезком 0100+1000=1100. Полученной сумме соответствует остаток 0111. Поскольку сделано уже (s‑1) шагов, прибавим этот остаток к оставшимся трем битам 0111+110=1011. На этот результат понадобится ссылка, поэтому присвоим ему наименование Us-1. Из полученной суммы выделим m0 левых бит и дополним их слева нулями до размерности ℓ (в данном случае – одним нулем). Получим 0101. Из таблицы найдем остаток – 1111. Выполняется s‑й шаг деления. Оставшуюся «1» (справа) от Us-1, из которого выделяли m0 левых бит, сложим со стороны старших разрядов с только – что полученным остатком 1111+1=0111. Это и есть контрольные биты к информационной последовательности 1101 1000 110.
Результат можно проверить традиционным делением последовательности А(х) х(n-k) на G(x) (в нашем случае 1101 1000 110 0000 на 10011).
Табл. 1. Остатки для ℓ-отрезков информационной последовательности
ℓ-отрезок | Остаток | ℓ-отрезок | Остаток |
00000001001000110100010101100111 | 00000011011001011100111110101001 | 10001001101010111100110111101111 | 10111000110111100111010000010010 |
Использованная литература
1. М.Н. Аршинов, Л.Е. Садовский Коды и математика (рассказы о кодировании).-М.: Наука, Главная редакция физико-математической литературы, 1983. – 144 с.
2. Блейхут Р. Теория и практика кодов, контролирующих ошибки: Пер. с англ. ‑ М.: Мир, 1986. – 576 с.
3. Гончаров Е.А, Слепаков В.Б. Об одном методе кодирования информации циклическими кодами на универсальной ЭВМ. – В кн.: Сб научных трудов ЦНИИС. М., 1970, вып. 3, с. 58–65.
4. В.С. Чернега, В.А. Василенко, В.Н. Бондарев Расчет и проектирование технических средств обмена и передачи информации: Учебное пособие для вузов. – М.: Высш. шк., 1990. –224 с.
[1]Здесь и всюду далее операции суммирования выполняются по mod2.
[2] Вообще говоря, такой метод тестирования большого доверия не заслуживает не только из-за малого числа проверяемых векторов, но и из-за кодирования входных векторов «порознь», а не путем их «извлечения» из файла произвольного формата. На вспомогательных операциях легко привнести ошибку в кодирование. Однако, из-за ограниченности времени таким поверхностным тестированием придется удовлетвориться.
Можно написать исходный файл известной двоичной структуры и искать несложные приемы просмотра двоичной структуры выходного файла, структура которого тоже становится наперед известной.
[3] Интерфейсы основной и вспомогательной программ, разумеется, могут быть совмещены.
[4]Но не значение типа «ноль/не ноль» без раскрытия структуры синдрома.
[5]V(х) по определению нацело делится на G(x).