Для обеспечения оптимальной работоспособности и сохранения здоровья профессиональных пользователей, на протяжении рабочей смены должны устанавливаться регламентированные перерывы.
4.7 Экологичность проекта
Экологическое воздействие системы на природную среду может быть связано с выбросами вредных веществ, тепловым или шумовым загрязнением, излучениями. В данном дипломном проекте можно выделить лишь три последних фактора, действующих только в пределах помещения.
4.7.1 Ионизационное излучение
В процессе выполнения дипломной работы на ЭВМ и при эксплуатации программы человек подвергается воздействию ионизационного излучения, которое поступает с дисплея компьютера.
Излучение дисплея достигает нормируемых значений радиационного фона 60 мкР/час, уже на расстоянии 2 см от экрана. В целях дополнительной защиты на дисплей надет фильтрующий экран, снижающий величину дозы облучения. Таким образом, получаемая оператором доза ионизационного облучения не наносит вреда для организма человека.
4.7.2 Электромагнитное излучение
В соответствии с [14], пользователь персонального компьютера при работе с дисплеем подвергается воздействию низкоэнергетического рентгеновского и ультрафиолетового излучения, электромагнитному излучению, статического электричества, поэтому расстояние от одного дисплея до другого должно быть не менее 2,0 м в направлении тыла, а расстояние между боковыми поверхностями не менее 1,2 м. Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600-700 мм, но не ближе 500 мм.
В помещении лаборатории расположение персональных компьютеров удовлетворяет вышеперечисленным требованиям.
4.7.3 Статическое электричество
Для предотвращения образования статического электричества и защиты от него в помещении необходимо использовать нейтрализаторы и увлажнители, а полы должны иметь антистатическое покрытие.
Защита от статического электричества должна проводиться в соответствии с санитарно-гигиеническими нормами допускаемой напряженности электростатического поля. Допускаемые уровни напряженности электростатических полей не должны превышать 20 кВ в течение 1 часа.
4.7.4 Оценка качества программы
Согласно норматива [10] оценка качества программного обеспечения (ПО) имеет сложную многоуровневую структуру. На элементарном уровне оценка качества ПО состоит из 245 оценочных элементов. Программные продукты обладать следующими показателями качества [10]:
Показатели надёжности:
устойчивость функционирования – способность обеспечивать продолжение работы программы после возникновения отклонений, вызванных сбоями технических средств, ошибками во входных данных и ошибками обслуживания;
работоспособность – способность программы функционировать в заданных режимах и объемах обрабатываемой информации в соответствии с программными документами при отсутствии сбоев технических средств.
Показатели сопровождения:
структурность – организация всех взаимосвязанных частей программы в единое целое с использованием логических структур “последовательность”, “выбор”, “повторение”;
простота конструкции – построение модульной структуры программы наиболее рациональным с точки зрения восприятия и понимания;
наглядность – наличие и представление в наиболее легко воспринимаемом виде исходных модулей ПС, полное их описание в соответствующих программных документах;
повторяемость – степень использования типовых проектных решений или компонентов, входящих в ПС.
Показатели удобства применения:
легкость освоения – представление программных документов и программы в виде, способствующем пониманию логики функционирования программы в целом и ее частей;
доступность эксплутационных программных документов – понятность, наглядность и полнота описания взаимодействия пользователя с программой в эксплутационных программных документах;
удобство эксплуатации и обслуживания – соответствие процесса обработки данных и форм представления результатов характеру решаемых задач.
Показатели эффективности:
уровень автоматизации – уровень автоматизации функций процесса обработки компании с учетом рациональности функциональной структуры программы с точки зрения взаимодействия с ней пользователя и использования вычислительных ресурсов;
временная эффективность – способность программы выполнять заданные действия в интервал времени, отвечающий заданным требованиям;
ресурсоемкость – минимально необходимые вычислительные ресурсы и число обслуживающего персонала для эксплуатации ПС.
Показатели универсальности:
гибкость – возможность использования ПС в различных областях применения;
мобильность – возможность применения ПС без существенных дополнительных трудозатрат на ЭВМ аналогичного класса;
модифицируемость – обеспечение простоты внесения необходимых изменений и доработок в программу в процессе эксплуатации.
Показатели корректности:
полнота реализации – полнота реализации заданных функций ПС и достаточность их описания в программной документации;
согласованность – однозначное, непротиворечивое описание и использование тождественных объектов, функций терминов, определений, идентификаторов и т.д. в различных частях программных документов и текста программы;
логическая корректность – функциональное и программное соответствие процесса обработки данных при выполнении задания общесистемным требованиям;
проверенность – полнота проверки возможных маршрутов выполнения программы в процессе тестирования.
В данном разделе представлен материал на тему «Основные конструктивные методы защиты радиоэлектронной аппаратуры от воздействия сильных электромагнитных излучений.
Приступая к эксплуатации средств вычислительной техники пользователю желательно знать, какие нарушения работоспособного состояния полупроводниковых приборов и типовых схем могут возникнуть при воздействии различных видов ионизационного излучения, являются ли они временными (обратимыми) или постоянными (необратимыми).
В первом приближении эффекты от воздействия ионизационного излучения можно рассматривать независимо, тем более что в реальных условиях на схему сначала действует гамма-импульс, а затем с определенным временным сдвигом — нейтронный импульс.
Ионизация, обусловленная действием гамма импульса, оказывает влияние на работу, например, интегральной схемы благодаря одному из трех механизмов: возникновению фототоков, протекающих через обратносмещенные переходы, полному нарушению работы транзистора и ухудшению свойств поверхности.
Фототоки, протекающие в цепях, могут приводить к появлению сигнала помехи на выходе схемы длительностью от нескольких наносекунд до сотен миллисекунд в зависимости от времени восстановления элементов схем. Может также произойти полное нарушение работоспособности транзисторов, например, в ИС с изоляцией p—n-переходами из-за того, что переход между коллектором и подложкой во время действия гамма импульса становится проводящим. Полное нарушение работоспособности схемы может также возникнуть из-за того, что соответствующие элементы становятся проводящими и могут пропускать неограниченный ток через переходы в режиме насыщения. При этом могут возникнуть как вторичный пробой, так и выгорание металлизации или перегорание токопроводящих цепей.
Воздействие нейтронов, в свою очередь, также полностью нарушает работоспособность схем из-за недопустимой деградации параметров приборов, либо приводит к временным отказам, обусловленным ионизацией из-за действия нейтронов или отжига нестабильных структурных повреждений. Накопление поверхностного заряда или образование зарядов в окружающей атмосфере также приводит к деградированию параметров полупроводниковых приборов.
Каждый из типов аппаратуры требует конкретного комплекса мероприятий, сущность которых раскрыта ниже в изложении методов повышения и обеспечения стойкости РЭА к действию ЭМИ: конструкционных, схемотехнических, структурно-функциональных.
Рассмотрим подробнее конструкционные методы. Общий принцип конструкционных методов защиты от ЭМИ состоит в улучшении экранирования кабелей, аппаратуры, выбора наилучших схем заземления для каждого конкретного случая.
Экранирование является наиболее радикальным и, можно сказать, единственным эффективным способом защиты проводных линий. Оно позволяет одновременно решать следующие задачи: уменьшать опасные напряжения, наводимые в линиях под действием ЭМИ, а также уровни полей, проникающих в экранированные блоки по линиям связи. При использовании экранированных проводных линий следует учитывать, что эффективность экранирования в значительной степени зависит от места присоединения экранирующей оплетки к системе заземления объектов и качества этих соединений. Применение экранирующей оболочки, не соединенной с заземлением, не дает практически экранирующего эффекта. Это объясняется тем, что в данном случае в оболочке не возникают токи, поле которых могло бы уменьшить магнитную составляющую ЭМИ.
Помимо экранирования для уменьшения амплитуды напряжений, действующих в соединительных линиях в результате воздействия ЭМИ, следует выполнять эти связи с помощью симметричных линий. Симметрирование заключается в скручивании с определенным шагом проводов линии для выравнивания параметров каждого из них по отношению к земле. В этом случае напряжение, действующее на нагрузке, равно разности напряжений, наведенных ЭМИ в прямом и обратном проводах линии, и тем меньше, чем меньше отличаются полные сопротивления этих проводов относительно земли или экранной оболочки линии.
Значительное снижение влияния напряжений и токов, наводимых ЭМИ в соединительных линиях на элементы аппаратуры, достигается применением гальванического разделения внутренних и внешних линий связи. В качестве элементов гальванического разделения могут быть использованы трансформаторы, датчики Холла и т. д.