Смекни!
smekni.com

Проектирование локальной вычислительной сети (стр. 6 из 8)

Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается.

Структурированная кабельная система (СКС) представляет собой иерархическую кабельную среду передачи электромагнитных сигналов в здании, разделённую на структурные подсистемы и состоящую из элементов - кабелей и разъемов. По сути СКС состоит из набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, кабельных разъёмов, модульных гнёзд информационных розеток и вспомогательного оборудования. СКС обеспечивает подключение локальной АТС, одновременную работу компьютерной и телефонной сети и предоставляет возможность гибкого изменения конфигурации кабельной системы. Кабели, оснащенные разъемами и проложенные по определенным правилам, образуют линии и магистрали. Линии, магистрали, точки подключения и коммутации составляют функциональные элементы СКС.

Универсальность СКС подразумевает использование ее для различных систем:

× компьютерная сеть;

× телефонная сеть;

× охранная система;

× пожарная сигнализация.

Такая кабельная система независима от оконечного оборудования, что позволяет создать гибкую коммуникационную инфраструктуру предприятия.

Структурированная кабельная система - это совокупность пассивного коммуникационного оборудования:

× Кабель - этот компонент используется как среда передачи данных СКС.

× Розетки - этот компонент используют как точки входа в кабельную сеть здания.

× Коммутационные панели - используются для администрирования кабельных систем в коммутационных центрах этажей и здания в целом.

× Коммутационные шнуры - используются для подключения офисного оборудования в кабельную сеть здания, организации структуры кабельной системы в центрах коммутации.

СКС - охватывает все пространство здания, соединяет все точки средств передачи информации, такие как компьютеры, телефоны, датчики пожарной и охранной сигнализации, системы видеонаблюдения и контроля доступа. Все эти средства обеспечиваются индивидуальной точкой входа в общую систему здания. Линии, отдельные для каждой информационной розетки, связывают точки входа с коммутационным центром этажа, образуя горизонтальную кабельную подсистему. Все этажные коммутационные узлы специальными магистралями объединяются в коммутационном центре здания. Сюда же подводятся внешние кабельные магистрали для подключения здания к глобальным информационным ресурсам, таким как телефония, интернет и т.п. Такая топология позволяет надежно управлять всей системой здания, обеспечивает гибкость и простоту системы.

В каждом конкретном здании в общем случае присутствуют три подсистемы СКС: вертикальная кабельная подсистема, горизонтальная кабельная подсистема и подсистема рабочих мест. Для достаточно крупных зданий, с большим количеством рабочих мест на этажах, все эти три подсистемы присутствуют в явном виде. Для относительно небольших зданий с ограниченным количеством рабочих мест рекомендуется организовывать один узел коммутации СКС, куда сходится вся горизонтальная кабельная разводка. В этом случае вертикальная кабельная подсистема может отсутствовать либо носить вырожденный характер, при котором вертикальная кабельная подсистема представляется совокупностью коммутационных шнуров, соединяющих порты "этажных" коммутаторов ЛВС (коммутаторов для подключений рабочих мест) с портами центрального (магистрального) коммутатора.

Коммутационное оборудование

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала "один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (FastEthernet), единую для всех портов. Для GigabitEthernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для FastEthernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub — центр деятельности) — сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. — переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы — это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. mediaconverter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

× Преобразователь RS-232 <–> RS-485;

× Преобразователь USB <–> RS-485;

× Преобразователь Ethernet <–> RS-485.

Преобразователь RS-232 <–> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB <–> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.