БГПУ
Замкнутая ломаная без самопересечений
Содержание
Введение
Глава 1
§1. Понятие ломаной
§2. Прямая на плоскости
Глава 2
Введение: Перечень основных процедур и функций, используемых в программах
§1. Function Peres, БлокСхема
п.2 Function Peres, наязыке Turbo Pascal
§2. Рекурсивный способ построения простой замкнутой ломаной
§3. Верхняя оценка количества способов построения ПЗЛ
§4. Построения простой замкнутой ломаной методом "Треугольника"
п.1 Идея метода
п.2 Реализация на языке Паскаль
Список литературы
Тема бакалаврской работы является "Простая замкнутая ломаная кривая" (ПЗЛ).
Актуальность : выбранной темы заключается в том, что теория ПЗЛ имеет практическое применение например: прокладывание газопровода, железнодорожных путей и т.д., но теория ПЗЛ не дает ответа как и сколькими способами это возможно сделать. В теории ПЗЛ дано лишь определение ПЗЛ и ее компонентов без выделения, каких либо свойств. А так решение проблемы выбранной темы является, частным случаем решения задачи Коммивояжера её ещё называют транспортной задачей.
Объект исследования: Планиметрия.
Предмет исследования: Простая замкнутая ломаная на плоскости.
Цели: Изучит понятие ПЗЛ, выделить его свойства и составить алгоритм построения.
Задачи:
1) Составить рекурсивный алгоритм позволяющий построить все возможные ПЗЛ через n произвольных точек плоскости (замечание эти точки должны быть вершинами ПЗЛ, и других вершин нет). Реализовать его в среде TurboPascal.
2) Дать верхнюю оценку количества способов построения ПЗЛ через n произвольных точек плоскости.
3) Составить не рекурсивный алгоритм и реализовать его на языке TurboPascal, позволяющий строить ПЗЛ для большого количества произвольных точек
Гипотезы:
1. ПЗЛ можно построить всегда, кроме случая когда все точки лежат на одной прямой.
2. Пусть через n точек проходят S прямых имеющих не менее 4-х данных точек, тогда через эти n точек можно провести не более чем
различных ПЗЛ, где ki-количество точек принадлежащих i-ой прямой, i=1,2…S
Фигура, образованная конечным набором отрезков, расположенных так, что конец первого является началом второго, конец второго – началом третьего и т.д., называется ломаной линией или просто ломаной (рис. 1). Отрезки называются сторонами ломаной, а их концы – вершинами ломаной.
Ломаная обозначается последовательным указанием ее вершин. Например, ломаная АВСDE, ломаная A1A2…An.
Ломаная называется простой, если она не имеет точек самопересечения (рис. 2).
Ломаная называется замкнутой, если начало первого отрезка ломаной совпадает с концом последнего. Замкнутую ломаную, у которой точками самопересечения являются только начальная и конечная точки, также называют простой (рис. 3).
Длиной ломаной называется сумма длин ее сторон.
п.1. Уравнение прямой на плоскости.
Из курса геометрии известно, что любая прямая на плоскости xOy имеет уравнение
(1)[2], где - постоянные.Пусть даны две произвольные точки
и прямой l, тогда найдем уравнение прямой l, проходящей через эти точки.Воспользуемся уравнением (1).
Рассмотрим два случая, когда 1)
и 2) .1) Если
то, уравнение(1) примет вид , т.е. прямая будет параллельна оси Оу или совпадать с ней.Замечание: так как коэффициенты а и с заданы не однозначно, поэтому в алгоритмах, использующих уравнение прямой используется только геометрическая интерпретация этого случая, т.е. тот факт если прямая проходит через две точки у которых первые координаты равны, то эта прямая параллельна оси Оy.
2) Если
тогда уравнение(1) можно представить в виде (2), где . Так как точки и лежат на прямой l, то их координаты являются корнями уравнения(2). Поэтому для нахождения коэффициентов уравнения(2) достаточно решить систему уравненийí
относительно этих переменных k и d, получим решение,
í
т.е. мы нашли уравнение прямой l.Таким образом, если прямая не параллельна оси Оу то уравнение(1) равносильно уравнению
иначе уравнение(1) равносильно уравнению .п.2 Взаимное расположение двух прямых на плоскости.
Еще из школьного курса геометрии основной школы известно, что две прямые на плоскости либо пересекаются, либо параллельны.
Пусть две прямые l:
, и g: тогда если эти прямые параллельны, то [2] иначе .Если две различные прямые l и g не параллельны, то они имеют общую точку. Координаты этой точки являются решением системы уравнений.
í
Þí ÞíFunction S_3(T,B,C:tochka):Boolean;
Функция истина если три точки лежат на одной прямой.
Идея: находим уравнение прямой l, проходящей через точки В и С, и проверяем на принадлежность точки Т прямой l .
Var k1,b1:real;
Begin
If ((B.x=C.x)and(B.x=T.x)) or
((B.y=C.y)and(B.y=T.y))then S_3:=true
else
if B.x=C.x then S_3:=false
else begin
k1:=(B.y-C.y)/(B.x-C.x);
b1:=B.y-k1*B.x;
if round(T.y)=round(k1*T.x+b1) then S_3:=true
else S_3:=false;
end
End;
Function Prin(T,B,C:tochka):boolean;
Функция истина если точка Т принадлежит отрезку ВС.
Идея: Если точка Т лежит на отрезке ВС, то она лежит на прямой проходящей через точки В и С, и заключена между ними.
Begin
If S_3(T,B,C) then
if (((B.x<=T.x)and(T.x<=C.x)) or ((C.x<=T.x)and(T.x<=B.x))) and
(((B.y<=T.y)and(T.y<=C.y)) or ((C.y<=T.y)and(T.y<=B.y)))
then Prin:=true
else Prin:=false
else Prin:=false
End;
Истина если отрезки [AB] и [CD] имеют общие точки за исключением случаев:
1) если отрезки совпадают;
2) если один конец отрезка совпадает с одним из концов другого отрезка, и других общих точек нет.
Function Peres (A, B, C, D: tochka): boolean;
Var O: tochka;
k1, k2, b1, b2: real;
s1, s2: Boolean;
Begin
{Проверка 1-гослучая}
if (A.x=C.x)and(A.y=C.y) and (B.x=D.x)and(B.y=D.y) then Peres:=False
else
if (A.x=D.x)and(A.y=D.y) and (B.x=C.x)and(B.y=C.y) then Peres:=False
else
{Проверка 2-гослучая}
If (A.x=C.x)and(A.y=C.y) then if Prin(D,A,B) or Prin(B,C,D) then Peres:=true else Peres:=False
else
If (A.x=D.x) and (A.y=D.y) then if Prin(C, A, B) or Prin (B,C,D) then Peres:=true else Peres:=False
else
If (B.x=C.x)and(B.y=C.y) then if Prin(D,A,B) or Prin(A,C,D) then Peres:=true else Peres:=False
else
If (B.x=D.x)and(B.y=D.y) then if Prin(C,A,B) or Prin(A,C,D) then Peres:=true else Peres:=False
else { общейслучай }
If A.x=B.x then begin if C.x=D.x then if Prin(A,C,D) or
Prin(B,C,D) or
Prin(C,A,B) or
Prin(D,A,B) then Peres:=true else Peres:=false
else begin
k2:=(C.y-D.y)/(C.x-D.x);
b2:=C.y-k2*C.x;
O.x:=A.x;
O.y:=k2*O.x+b2;
if Prin(O,C,D) and Prin(O,A,B) then Peres:=true
else Peres:=False
end end
else if C.x=D.x then begin
k1:=(A.y-B.y)/(A.x-B.x);
b1:=A.y-k1*A.x;
O.x:=C.x;
O.y:=k1*O.x+b1;
if Prin(O,C,D) and Prin(O,A,B) then Peres:=true
else Peres:=False
end
else begin
k1:=(A.y-B.y)/(A.x-B.x);
k2:=(C.y-D.y)/(C.x-D.x);
if k1=k2 then {} if Prin(A,C,D) or
Prin(B,C,D) or
Prin(C,A,B) or
Prin(D,A,B) then Peres:=true
else Peres:=false
else begin
b1:=A.y-k1*A.x;
b2:=C.y-k2*C.x;
O.x:=(b1-b2)/(k2-k1);
if k1=0 then O.y:=b1
else if k2=0 then O.y:=b2
else O.y:=(b1/k1-b2/k2)/(1/k1-1/k2);
if Prin(O,C,D) and Prin(O,A,B)
then Peres:=true
else Peres:=false
end
end
End;
Идея:Чтобы перебрать все возможные способы построения простой замкнутой прямой мы воспользовались следующим алгоритмом построения:
1. Зафиксировали одну из n точек, т.к. не имеет значение, какая точка будет начальной т.к ломаная замкнутая;
2. Соединяя зафиксированную точку с одной из незанятых точек, получаем первую сторону ломаной.