Модель | Тактовая частота, МГц | Площадь ядра, мм2 | Напряжение питания ядра, В | Максимальная мощность тепловыделения, Вт |
AMD Athlon XP (Palomino) 1900+ | 1600 | 128 | 1,75 | 68,1 |
AMD Athlon XP (Palomino) 2000+ | 1667 | 1,75 | 70,0 | |
AMD Athlon XP (Palomino) 2100+ | 1733 | 1,75 | 71,9 | |
AMD Athlon XP (Thoroughbred) 2000+ | 1667 | 80 | 1,60 | 60,3 |
AMD Athlon XP (Thoroughbred) 2100+ | 1733 | 1,60 | 62,1 | |
AMD Athlon XP (Thoroughbred) 2200+ | 1800 | 1,65 | 68,0 |
Максимальные частоты (в смысле рейтинг частоты) Thoroughbred в настоящее время дошли до 2800+, выпущена новая версия ядра - степпинг 1(B). Доработаны недочеты начального варианта, уменьшена мощность тепловыделения, повысилась надежность и стабильность работы, что позволяет в большинстве тестов успешно конкурировать с PIV, в связи с чем AMD несколько поменяло политику своего PIV рейтинга, вот частотная таблица (обновленна в декабре 2003 года, указаны все модели Athlon XP на тот момент):
Рейтинг | Кэш L2. Кб | Множитель / FSB / МГц | Palomino | T-bred A | T-bred B | Barton |
3200+ | 512 | 11*200 = 2200 | — | — | — | X |
3000+ | 512 | 10.5*200 = 2100 | — | — | — | X |
3000+ | 512 | 13*166 = 2167 | — | — | — | X |
2800+ | 512 | 12.5*166 = 2083 | — | — | — | X |
2800+ | 256 | 13.5*166 = 2250 | — | — | X | — |
2700+ | 256 | 13*166 = 2167 | — | — | X | — |
2600+ | 512 | 11.5*166 = 1917 | — | — | — | X |
2600+ | 256 | 12.5*166 = 2083 | — | — | X | — |
2600+ | 256 | 16*133 = 2133 | — | — | X | — |
2500+ | 512 | 11*166 = 1833 | — | — | — | X |
2400+ | 256 | 15*133 = 2000 | — | — | X | — |
2200+ | 256 | 13.5*133 = 1800 | — | X | X | — |
2100+ | 256 | 13*133 = 1733 | X | X | X | — |
2000+ | 256 | 12.5*133 = 1667 | X | X | X | — |
1900+ | 256 | 12*133 = 1600 | X | X | X | — |
1800+ | 256 | 11.5*133 = 1533 | X | X | X | — |
1700+ | 256 | 11*133 = 1466 | X | X | X | — |
1600+ | 256 | 10.5*133 = 1400 | X | — | — | — |
1500+ | 256 | 10*133 = 1333 | X | — | — | — |
Поскольку при все большем увеличении частоты производительность растет все меньше и меньше, с версии 2400+, можно увидеть большее увеличении частоты, чем выводится из общей формулы AMD для процессоров с маркировкой XP. Должно бы быть 1800+2*66=1933 МГц, а реально 2000. И немного по другому: разница между 2600+ и 2700+ всего 33MHz, однако переход на 166 МГц шину позволяет увеличить рейтинг при такой малой разницы частоты. Все это в очередной раз свидетельствует о честном подходе AMD к данному рейтингу как к показателю реальной производительности процессора, а не к пустым ничего не значащим цифрам. Barton - кодовое название 5-го ядра процессора Athlon XP. Отличает Barton от Throughbred кэш-память второго уровня 512 кб и шина 333 (400). Будут выпускаться от 2500+, 2800+ , 3000+ 3200+ (шина 400 МГц). До 3500+ (если будут :) ). Больше отличий нет.
Посмотрите, ядро Barton (справа) немного удлинено из-за большего объёма кэша:
Частотная политика AMD реализованная в модельном ряде Barton представляется мне несколько сомнительной. Выпущен кристалл с рейтингом 3000+, реальная частота которого 2167. Такая же частота у Thoroughbred 2700+, а у 2800+ частота уже выше(2233MHz). Получается что Barton 3000+, хоть и быстрее предыдущей модели 2800+, но не строго. Потому что с увеличением кэша, увеличение быстродействия во многом зависит и от приложения, а иногда его может не наступить вообще. В отличии от всех предыдущих моделей, когда при увеличении рейтинга, увеличивалась и частота. А при увеличении частоты производительность увеличивается всегда. Соответственно росло и быстродействие всей линейки, пусть и не равномерно, особенно с учётом разгона по частоте с 133 на 166 на последних моделях. Но - постоянно, от модели к модели. А теперь, с учётом того, что у 2800+ частота выше, возможно в некоторых приложениях он окажется даже быстрее. Впрочем основные усилия AMD сосредотачивает на K8, а модельный ряд К7, с надрывом достигает возможных и невозможных для него пределов, повторяя историю К6. Кстати и увеличение кэша до 512Мб погоды не делает - в случае большого потока данных кроме кэша ещё необходима быстрая связь с контроллером памяти (как впрочем и с остальными устройствами), а шина FSB (процессор-северный мост, через который процессор может соединяться со всеми устройствами, в том числе и с контроллером памяти) обладает пропускной способностью всего 2700Мб/с (при 166МГц, результирующая - 333 МГц), чего явно не достаточно. Добавленно декабрь 2003: для сравнения у Intel с 800MHz шиной пропускная способность состовляет 6400Мб/с. Чем больше частота процессоров AMD, тем более сказывается эффект узкой шины. Thorton - кодовое название 6-го ядра процессора Athlon XP. Это ядро завершает всю линейку K7. Младший брат ядра Barton комплектуется кэш-памятью второго уровня 256 Кб. Возможно появление таких процессоров с рейтингом от 3000+ и выше. Поддерживает технологию как и Athlon XP Barton "Bus Disconnect", которая в случае перегрева отключает процессор от системной шины. Duron - семейство процессоров K7, ориентированных на сектор компьютеров Low-End. Являются конкурентами процессоров Celeron, однако обладают меньшей ценой и большей производительностью при равных рабочих частотах. Построены на варианте ядра Thunderbird с урезанной до 64 Кбайт кэш-памятью L2. Выпускаются только в форм-факторе Socket A. Spitfire - кодовое название 1-го ядра Duron. Основано на ядре Thunderbird с урезанным в 4 раза кэшем 2-го уровня.
Morgan - кодовое название 2-го ядра Duron. Основано на ядре Palomino с урезанным в 4 раза кэшем 2-го уровня.
Appaloosa - кодовое название 3-го ядра Duron. Основано на ядре Thoroughbred с урезанным в 4 раза кэшем 2-го уровня. Должен был выпускаться с шиной 266 мгц при 0,13 техпроцессе. Ни одного экземпляра процессора выпущено не было. Этот процессор мог бы помешать продажам Athlon нижних частот, и поэтому AMD от него отказалась. Athlon MP - серверная версия Athlon XP, с хорошей масштабируемостью в 2-х процессорных системах, по маркетинговым соображениям вышел раньше Athlon XP. Вполне возможно, что новые ядра процессоров AMD получат технолонию виртуальной многоядерности, или даже реальной - в сервереных кристаллах. Intel уже имеет технологию виртуальной двухпроцессорности. Носит она название Hyper-Threading. Для иллюстрации подобного рода решений несколько слов о её работе. Технология очень кстати для многозадачности и задач с множеством потоков, а это востребованно практически повсеместно. Разумеется, для этого необходима поддержка многопроцессорности на уровне операционной системы (есть в Win2k - NT, 2000, XP, в различных Linux и Unix, в Win9x такой поддержки нет); для увеличения производительности в отдельном приложении важно, учитывалось ли при разработке распараллеливание кода на несколько процессоров. Реализовано Hyper-Threading в виде дополнительного набора регистров. Получается 2 независимых регистровых блока + процессорное ядро. В итоге могут исполняться 2 независимых участка кода на одном ядре - 2 процессорная система de facto. Однако необходимо учитывать, что "второй" процессор - логический, поэтому при загрузке процессора множеством потоков производительность растет (за счёт более "плотной" загрузке ядра потоками), но совсем не настолько, как при наличии второго физического ядра (или как у двухпроцессорных систем). В этой гонке основные козыри PIV перед AMD - SSE2 и широкая полоса пропускания шины процессор-память - практически единственные явные технологические преимущества Intel за долгое время. В спецификации Northwood увеличен кэш L2 до 512 Кб, что является традиционной для Intel "игре мускулами". Полоса пропускания взята с большим запасом и пока еще до конца не востребована, что дает возможность Intel спокойно и планомерно повышать частоты процессоров, сохраняя практически линейную масштабируемость, сосредотачивая усилия на оптимизации технологии изготовления, рекламных компаниях и будущих планах. Большинство приложений в первую очередь пишется с учетом технологий Intel, что делает эту компанию "законодателем мод", что способствует продаже процессоров в целом. Поэтому Intel, не обладая наиболее интересными и концептуально стройными решениями, но применяя свои наработки вовремя, к месту и в достаточном количестве, в данный момент является лидером по показателям абсолютной производительности.
Теперь более подробно рассмотрим архитектуру процессора AMDAthlon.
2. Общие сведения о процессоре AMD Athlon (Thunderbird)
AMD Athlon (Thunderbird) - первый выпускаемый серийно процессор седьмого поколения микроархитектуры x86 - наиболее мощный микропроцессор для x86-совместимых компьютеров. Все семейство процессоров AMD Athlon™ разрабатывается как ядро x86-совместимых компьютеров следующего поколения. Разработка этих процессоров явилась ответом на все возрастающие требования к вычислительной мощи процессоров, предъявляемых со стороны современного программного обеспечения, используемого на персональных компьютерах высокого уровня, рабочих станциях и серверах. Процессоры AMD Athlon для настольных компьютеров выпускались в двух вариантах корпусов: SECC (все модификации) и FCPGA (Thunderbird).