Смекни!
smekni.com

Прямой метод вращения векового определителя (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

«Оренбургский государственный университет»

Факультет экономики и управления

Кафедра математического обеспечения информационных систем

КУРСОВАЯ РАБОТА

по дисциплине «Численные методы»

Прямой метод вращения векового определителя

ОГУ 061800.8006.18 ООО

Руководитель работы

____________________Ващук И.Н.

«_____» _______________ 2006 г.

Исполнитель студент гр. 04ММЭ

________________Широбоков П.Д.

«_____» ________________ 2006 г.

Оренбург 2006


Оглавление

Введение. 3

Постановка задачи.. 4

Описание метода. 5

Сходимость метода. 8

Описание входных и выходных данных.. 9

Заключение. 10

Список литературы.. 11

Приложение А... 12

Приложение Б.. 19

Введение

Численные методы решения проблемы собственных значений до конца 40-х годов, сводились, в основном, к решению характеристического уравнения. При реализации такого подхода, основные усилия были направлены на разработку эффективных методов быстрого вычисления коэффициентов характеристического уравнения. Такие методы имеют названия прямых. Популярным методом этого типа является метод Данилевского. Он давал довольно большую погрешность, но в тоже время имел очень большую скорость получения результата.

Мы предпримем попытку анализа возможности использования этого метода в современных условиях. Попытаемся обозначить возможные границы применения этого метода, и так же найти области науки, где пользоваться методом Данилевского было бы очень удобно.

Постановка задачи

Большое число задач математики и физики требует отыскания собственных значений и собственных векторов матриц, т.е. отыскания таких значений +

, для которых существуют нетривиальные решения однородной системы линейных алгебраических уравнений

, (1)

и отыскания этих нетривиальных решений.

Здесь

-квадратная матрица порядка m ,
- неизвестный вектор - столбец.

Из курса алгебры известно, что нетривиальное решение системы (1) существует тогда и только тогда, когда

, (2)

где Е - единичная матрица. Если раскрыть определитель

, получим алгебраическое уравнение степени m относительно
.Таким образом задача отыскания собственных значений сводится к проблеме раскрытия определителя
по степеням
и последующему решению алгебраического уравнения m- й степени.

Определитель

называется характеристическим (или вековым ) определителем, а уравнение (2) называется характеристическим (или вековым ) уравнением.

Различают полную проблему собственных значений, когда необходимо отыскать все собственные значения матрицы А и соответствующие собственные векторы, и частичную проблему собственных значений, когда необходимо отыскать только некоторые собственные значения, например, максимальное по модулю собственное значение .

Описание метода

Идея метода Данилевского состоит в том, что матрица А приводится к “нормальной форме Фробениуса”, имеющей вид:

.

Характеристическое уравнение для матрицы Р имеет простой вид

т.е. коэффициенты при степенях

характеристического полинома непосредственно выражаются через элементы первой строки матрицы Р.

Приведение матрицы А к нормальной форме Фробениуса Р осуществляется последовательно построкам, начиная с последней строки.

1. Приведем матрицу

к виду

Пусть

Можно проверить,что такой вид имеет матрица
, которая равна

где

Следующий шаг - приведение

подобным преобразованием к
.

Таким образом

И так далее:

2. Рассмотрим нерегулярный случай, когда матрица, полученная в результате подобных преобразований приведена уже к виду

и элемент
.

Таким образом обычная процедура метода Данилевского не подходит из-за необходимости деления на ноль. В этой ситуации возможно два случая.

2.1 Предполагаем, что левее

есть элемент
Тогда домножая матрицу
слева и справа на элементарную матрицу перестановок
, получаем матрицу
.

В результате на необходимом нам месте оказывается ненулевой элемент

, уже преобразованная часть матрицы не меняется, можно применять обычный шаг метода Данилевского к матрице
.

2.2 Рассмотрим второй нерегулярный случай, когда в матрице

элемент
и все элементы левее, тоже нулевые. В этом случае характеристический определитель матрицы
можно представить в виде

где
и
- единичные матрицы соответствующей размерности, а квадратные матрицы
и
имееют вид:

Обратим внимание на то, что матрица

уже имеет нормальную форму Фробениуса, и поэтому сомножитель
просто развертывается в виде многочлена с коэффициентами, равными элементам первой строки.

Сомножитель

нужно преобразовывать. Для развертывания можно применять метод Данилевского, приводя матрицу
подобными преобразованиями к нормальной форме Фробениуса.

Указанный подход становится неудовлетворительным при вычислении собственных значений матриц, имеющих порядок m в несколько десятков (и тем более сотен). В частности, одним из недостатков является так же то, что точность вычисления корней многочлена высокой степени данным методом чрезвычайно чувствительна к погрешности (накапливающейся со скоростью геометрической прогрессии) в коэффициентах, и на этапе вычисления последних может быть в значительной степени потеряна информация о собственных значениях матрицы.

Тесты метода и ПО см. В Приложении Б.

Сходимость метода

Определение. Квадратная матрица Р порядка m называется подобной матрице А , если она представлена в виде

, где S - невыродженная квадратная матрица порядка m.