министерство общего и специального образования Российской Федерации
сибирский государственный технологический университет
На правах рукописи
Доррер Михаил Георгиевич
психологическая интуиция ИСКУССТВЕННЫХ нейронных сетей
05.13.16- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (в биофизике).
диссертация
на соискание ученой степени кандидата технических наук
Научный руководитель:
доктор физ.-мат. наук, профессор А.Н. Горбань
Красноярск - 1998
Оглавление
Введение........................................................................................................... 4
Глава 1. Психодиагностика и нейронные сети............................................. 13
1.1 Задачи и методы современной психодиагностики................................. 13
1.2 Сущность интуитивного метода............................................................. 16
1.3 Математические модели и алгоритмы психодиагностики..................... 17
1.4 перспективные алгоритмы построения психодиагностических методик 23
1.5 методы восстановления зависимостей.................................................... 25
1.6 алгоритмы и методы безусловной оптимизации................................... 29
1.7 нейронные сети........................................................................................ 36
1.7.1 Основные элементы.............................................................................. 36
1.7.2 Структура сети..................................................................................... 37
1.7.3 Прямое функционирование сети.......................................................... 37
1.7.4 Обучение сети....................................................................................... 38
1.7.5 Обратное функционирование.............................................................. 39
Выводы главы 1............................................................................................ 40
Глава 2. Решение нейросетями классических задач психодиагностики..... 41
2.1 Классический эксперимент...................................................................... 41
2.2 Оценка значимости вопросов теста........................................................ 44
2.3 Контрастирование сети по значимости вопросов теста......................... 46
2.4 Результаты экспериментов с контрастированными сетями................... 47
Выводы главы 2............................................................................................ 48
Глава 3. Интуитивное предсказание нейросетями взаимоотношений........ 50
3.1 Проблема оценки взаимоотношений...................................................... 50
3.2 Общая задача экспериментов................................................................. 50
3.3 Применяемые в экспериментах психологические методики.................. 51
3.4 Эксперименты по предсказанию группового статуса........................... 53
3.5 Нейросетевое исследование структуры опросника............................... 60
3.6 Оценка оптимизации задачника нейросетью с позиций теории информации........................................................................................................................ 67
3.7 Эксперименты по предсказанию парных взаимоотношений................ 68
Выводы главы 3............................................................................................ 69
Глава 4. Полутораслойный предиктор с произвольными преобразователями........................................................................................................................ 71
4.1 Постановка проблемы............................................................................. 71
4.2 Аналитическое решение.......................................................................... 72
4.3 Запись решения в идеологии нейросетей............................................... 74
4.4 Алгоритмическая часть........................................................................... 76
4.5 Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица...................................................................................... 82
4.6 Соглашение о терминологии.................................................................. 84
4.7 Компоненты сети..................................................................................... 85
4.8 Общий элемент сети................................................................................ 85
4.9 Вход сети................................................................................................. 87
4.10 Выход сети............................................................................................. 87
4.11 Синапс сети............................................................................................ 88
4.12 Тривиальный сумматор........................................................................ 89
4.13 Нейрон................................................................................................... 89
4.14 Поток сети.............................................................................................. 91
4.15 Скомпонованная полутораслойная поточная сеть.............................. 92
Выводы по главе 4........................................................................................ 94
ВЫВОДЫ...................................................................................................... 95
ЛИТЕРАТУРА............................................................................................... 98
Программа-имитатор полутораслойной сети............................................ 107
Программа расчета социометрических показателей................................. 115
Психологический опросник А.Г. Копытова............................................... 119
С самого начала информационной эры идеи воспроизведения в работе вычислительных машин принципов функционирования мозга занимают умы ученых. Известно, например, что Винер и Розенблатт совместно работали над изучением биологических нейронов, и что из этих работ родилась идея обучения автоматов Винера и теория обучения сетей перцептронов Розенблатта.
Идея применения искусственных нейронных сетей в современной вычислительной технике заняла прочное место в умах ее разработчиков. Нейронные сети применяются для решения задач искусственного интеллекта, в системах технических органов чувств и управления производственными процессами. Адаптивные сетчатки Хопфилда применяются для создания устойчивых к помехам систем связи. В стадии опытно-конструкторских разработок (например, в лабораториях фирмы Siemens) находятся образцы аппаратных нейрокомпьютеров массового применения – нейросопроцессоров к персональным компьютерам.
Нейрокомпьютеры находят применение во многих отраслях современной науки – ядерной физике, геологии, метеорологии. Исследование искусственных нейронных сетей составляют значительные разделы в таких науках, как биофизика, вычислительная математика, электроника.
Привлекательным было бы и применение искусственных нейронных сетей к наукам о человеке. Однако здесь возникает следующая проблема: их теория не сформировалась пока в достаточной степени для того, чтобы описать процессы, происходящие в системах, в виде явных и пригодных для моделирования на современной вычислительной технике алгоритмов. Выражается это в частности в том, что диагностический аппарат психологии и медицины в существенной части основан на подходах, связанных с изучением и систематизацией прецедентов. Моделирование же биофизических процессов затруднено огромной сложностью систем – так, при работе с психологическими задачами функционирование системы, состоящей из количества элементов порядка 109 (человеческого мозга) недоступно для моделирования на вычислительной машине любой мыслимой сегодня мощности.
Попытки применения нейросетевых подходов в медицине были предприняты с немалым успехом группой НейроКомп. При помощи нейросетевых экспертных систем были решены задачи прогнозирования осложнений инфаркта миокарда, ранней диагностики и дифференциальной диагностики злокачественных опухолей сосудистой оболочки глаза, моделирования лечения и прогнозирования его непосредственных результатов у больных облитерирующим тромбангиитом, дифференциальной диагностики «острого живота», изучения иммунореактивности.
Вообще, на пути применения искусственных нейронных сетей к задачам из области биологии, медицины и психологии можно ожидать несколько важных результатов. Во-первых, нейронные сети, работая по неявным алгоритмам и решая задачи, не имеющие явного решения, по механизму решения задач приближаются к человеческому мозгу, что может дать важный материал для изучения процессов высшей нервной деятельности. Во-вторых, нейросети могут служить в качестве математического инструмента для научных исследований при поиске взаимосвязей и закономерностей в больших информационных структурах, изучения взаимного влияния различных факторов и моделирования сложных динамических процессов.
В силу этого разработка методов нейросетевого моделирования и анализа информации является актуальной задачей.
Раздел информационной науки, называемый нейроинформатикой и начавшийся в свое время еще работами Розенблатта над теорией обучения сетей перцептронов пережил несколько бумов и спадов. В настоящий момент самые общие представления о нейроинформатике таковы:
Принципы работы нейрокомпьютеров напоминают взаимодействие клеток нервной системы - нейронов через специальные связи - синапсы. Основой работы самообучающихся нейропрограмм является нейронная сеть, представляющая собой совокупность нейронов - элементов, связанных между собой определенным образом.
Обучение нейронной сети достигается путем подстройки параметров - весов синапсов и характеристик преобразователей с целью минимизации ошибки определения примеров обучающей выборки - пар вида «требуемый выход - полученный выход».
В обучении используется алгоритм сверхбыстрого вычисления градиента функции ошибки по обучаемым параметрам при помощи аппарата двойственных функций. Наличие методов, позволяющих получать в высокопараллельном (при наличии соответствующего аппаратного обеспечения) режиме градиент функции ошибки позволяет использовать для обучения нейронных сетей обширный аппарат методов безусловной оптимизации многомерных функций.
Опыт, накопленный исследователями в области нейроинформатики, показывает, что при помощи аппарата нейронных сетей возможно удовлетворение крайне острой потребности практикующих психологов и исследователей в создании психодиагностических методик на базе их опыта, минуя стадию формализации и построения диагностической модели. Таким образом, данная работа посвящена исследованию вопроса о возможности развития психологической интуиции у нейросетевых экспертных систем.
Целью данной работы являлось исследование следующих аспектов применения нейронных сетей к психологическим задачам: