Смекни!
smekni.com

Работа с финансовыми функциями Excel (стр. 2 из 3)

- матрица прямых затрат, коэффициенты прямых затрат вычисляются по формуле
.

Основная задача межотраслевого баланса - отыскание такого вектора валового выпуска

, который при известной матрице прямых затрат А обеспечивает заданный вектор конечного продукта
.

Матричное решение данной задачи:

Работа с матрицами s пакете Excel

В пакете Excel существует несколько функций для работы с матрицами:

ТРАНСП - транспонирование матрицы;

МОПРЕД - нахождение определителя матрицы;

МУМНОЖ - умножение матриц;

МОБР - нахождение обратной матрицы.

Все эти функции (кроме ТРАНСП) находятся в категории "Математические", функция ТРАНСП - в категории "Ссылки и массивы".

Для работы с матрицами необходимо сделать следующее:

1 Выделить блок ячеек, в который нужно поместить результат.

2 Выбрать Вставка функции, найти нужную функцию.

3 Ввести адрес (или адреса) исходной матрицы (непосредственно или курсором). Нажать кнопку "ОК".

Для того, чтобы получить на экране все значения результата, нажать клавиши F2 и одновременно Ctrl+Shift+Enter.

Задание

Связь между тремя отраслями представлена матрицей прямых затрат А. Спрос (конечный продукт) задан вектором Y. Найти валовой выпуск продукции отраслей Х. Описать используемые формулы, представить распечатку со значениями и формулами.

Решение:

1. Вводим исходные данные в ячейки пакета Excel. Матрицу прямых затрат А вводим в ячейки (B2: D4), матрицу спроса

в ячейки (G2: G4).

2. Определим матрицу прямых затрат

. Вначале найдем матрицу (Е-А).

Где Е - единичная матрица,

.

.

Вводим в ячейки (B6: D8) единичную матрицу. Матрицу (Е-А) посчитаем в ячейках (B13: D15) по формуле

.

3. Для вычисления обратной матрицы, сначала вычислим определитель.

Для этого выставляем курсор в ячейку, где будет определитель (G14), вызываем Вставку функции, в категории "Математические" выбираем функцию нахождения определителя матрицы МОПРЕД, вводим адрес матрицы МОПРЕД (В13: D15) и нажимаем "ОК". В ячейке G14 появляется значение определителя матрицы.

.

4. Для нахождения обратной матрицы используем математическую функцию МОБР. Обратную матрицу

находим функцией МОБР:

.

Для этого выделяем блок ячеек, где должна находится обратная матрица (B17: D19), вызываем Вставку функции, в категории "Математические" выбираем функцию нахождения обратной матрицы МОБР, вводим адрес матрицы MOBP (B13: D15), нажимаем "ОК". Для получения на экране значения коэффициентов обратной матрицы, нажимаем клавиша F2 и Ctrl+Shift+Enter одновременно.

5. Вектор валового выпуска определяется по формуле

, Находим вектор решений системы уравнений умножением обратной матрицы на вектор-столбец
, используя встроенную математическую функцию МУМНОЖ:

.

Для этого выделяем блок, где будет находится вектор

- (G17: G19). Вызываем Вставку функции в категории "Математические", выбираем функцию МУМНОЖ, вводим адрес обратной матрицы (B17: D19) и вектора Y (G2: G4):

МУМНОЖ (B17: D19; G2: G4), нажимаем "ОК" Для получения на экране значения решения, нажимаем клавиша F2 и Ctri+Shift+Enter одновременно.

В результате решения было определено, что для удовлетворения спроса необходимо произвести продукции в1-й, 2-й и 3-й отраслях на 100, 100 и 90 д. е. соответственно.

Затраты (отрасли) Выпуск (потребление) Конечный продукт Валовой выпуск
1 2 3
1 0,05 0.15 0,4 44 100
2 0,1 0.1 0,3 53 100
3 0,3 0,15 0,2 27 90
A B C D E F G
1 РАСЧЕТ ВАЛОВОГО ВЫПУСКА ПРОДУКЦИИ
2 0,05 0,15 0,4 44
3 А= 0,1 0,1 0,3 Y= 53
4 0,3 0,15 0,2 27
5
6 1 0 0
7 Е= 0 1 0
8 0 0 1
9
10
11 Решение задачи
12
13 0,95 -0,15 -0,4
14 E-A= -0,1 0,9 -0,3 D= 0,50175
15 -0,3 -0,15 0,8
16
17 1,34529148 0,358744 0,807175 100
18 E-A (-1) = 0,33881415 1,275536 0,647733 (E-A) (-1) *Y= 100
19 0,56801196 0,373692 1,674141 90
A B C D E F G
1 РАСЧЕТ ВАЛОВОГО ВЫПУСКА ПРОДУКЦИИ
2 0,05 0,15 0,4 44
3 А= 0,1 0,1 0,3 Y= 53
4 0,3 0,15 0,2 27
5
6 1 0 0
7 Е= 0 1 0
8 0 0 1
9
10
11 Решение задачи
12
13 =B6-B2 =C6-C2 =D6-D2
14 E-A= =B7-B3 =C7-C3 =D7-D3 D= =МОПРЕД (B13: D15)
15 =B8-B4 =C8-C4 =D8-D4
16
17 =МОБР (B13: D15) =МОБР (B13: D15) =МОБР (B13: D15) =МУМНОЖ (B17: D19; G2: G4)
18 E-A (-1) = =МОБР (B13: D15) =МОБР (B13: D15) =МОБР (B13: D15) (E-A) (-1) *Y= =МУМНОЖ (B17: D19; G2: G4)
19 =МОБР (B13: D15) =МОБР (B13: D15) =МОБР (B13: D15) =МУМНОЖ (B17: D19; G2: G4)

Задача № 4

В опытном хозяйстве установили, что откорм животных возможен тогда, когда животное будет получать вещества А не менее 10 ед., вещества В - не менее 12 ед. и вещества С - не менее 4 ед. Для кормления животного используются два вида корма. В 1 кг корма первого вида содержится 2, 2 и 0 единиц питательных веществ соответственно. В 1 кг корма второго вида содержится 1, 3, 2 единицы питательных веществ соответственно. Цена 1 кг корма первого вида равна 50 д. е., корма второго вида - 60 д. е. Сколько корма каждого вида нужно расходовать ежедневно, чтобы затраты на него были минимальными?

Решение:

1. Формализация задачи.

Обозначим:

количество корма 1-го вида через x1;

количество корма 2-го вида через x2;

Тогда целевая функция - затраты на корм - равна:

z=50x1+60x2

Соотношение количества вещества А в дневном рационе не должно быть меньше 10 д. е., т.е.

2x1+1x2≥10

Соответственно для вещества В и вещества С

2x1+3x2≥12

0x1+2x2≥4

Так как x1 и x2 - количество продукта, то справедливо

x1≥0

x2≥0

Полученная математическая модель задачи о смесях:

z=50x1+60x2 (min)

2x1+1x2≥10

2x1+3x2≥12

0x1+2x2≥4

x1≥0

x2≥0

2. Точное (алгебраическое) решение формализованной задачи.

Поскольку граничные условия, содержащие оба аргумента, представлены тремя уравнениями, решаются две системы, каждая из которых состоит из двух уравнений с двумя неизвестными.

Система уравнений I:

{ 2x1+1x2≥10 [1]
0x1+2x2≥4 [2]

из [2] x2=2; тогда из [1] x1=4,Система уравнений II:

{ 2x1+3x2≥12 [3]
0x1+2x2≥4 [4]

из [4] x2=2; тогда из [3] x1=3,Принимаем x1=4, x2=2, поскольку значение x1=3 не удовлетворяет неравенство 2x1+1x2≥10

3. Графическое решение формализованной задачи.

Строим область, являющуюся пересечением всех плоскостей математической модели полученной при формализации задачи (см. черт.1).