Рисунок 9 – Формирование вектора инициализации генератора ПСП для рандомизации нисходящего потока OFDM.
Кодирование данных предполагает каскадный код с двумя стадиями – кодер Рида-Соломона из поля Галуа GF (256) и сверточный кодер. В базовом виде код Рида-Соломона оперирует блоками исходных данных по 239 байт, формируя из них кодированный блок размером 255 байт (добавляя 16 проверочных байт). Такой код способен восстановить до 8 поврежденных байт. Поскольку реально используются блоки данных меньшей длины K, перед ними добавляются (239 – K) нулевых байт. После кодирования эти байты удаляются. Если необходимо сократить число проверочных слов, так чтобы уменьшить число восстанавливаемых байт Т, используются только 2 первых проверочных байтов. Обязательные для поддержки в IEEE 802.16 варианты каскадного кода приведены в таблице 5.
Таблица 5. Основные режимы в стандарте IEEE 802.16.
Модуляция | Блок данных кодирования байт | Кодер Рида-Соломона | Скорость кодирования сверточного кодера | Суммарная скорость кодирования | Блокирование данных после кодирования байт |
BPSK | 12 | (12,12,0) | 1/2 | 1/2 | 24 |
QPSK | 24 | (32,24,4) | 2/3 | 1/2 | 48 |
QPSK | 36 | (40,36,2) | 5/6 | 3/4 | 48 |
16-QAM | 48 | (64,48,8) | 2/3 | 1/2 | 96 |
16-QAM | 72 | (80,72,4) | 5/6 | 3/4 | 96 |
64-QAM | 96 | (108,96,6) | 3/4 | 2/3 | 144 |
64-QAM | 108 | (120,108,6) | 5/6 | 3/4 | 144 |
После кодера Рида-Соломона данные поступают в сверточный кодер (рис.3) с порождающими последовательностями (генераторами кода) G1 = 171
(для выхода Х) и G2 = 133 (для Y) – так называемый стандартный код NASA. Его базовая скорость кодирования – 1/2, т.е. из каждого входного бита он формирует пару кодированных бит X и Y. Упуская из последовательности пар элементы Xi или Yi, можно получать различные скорости кодирования.После кодирования следует процедура перемежения – перемешивания битов в пределах блока кодированных данных, соответствующего OFDM-символу. Эта операция проводится в две стадии. Цель первой – сделать так, чтобы смежные биты оказались разнесенными по несмежным несущим. На второй стадии смежные биты оказываются разнесенными в разные половины последовательности. Все это делается для того, чтобы при групповых ошибках в символе повреждались несмежные биты, которые легко восстановить при декодировании. Перемежение реализуется в соответствии с формулами
mk = ( Ncbps / 12) – ( kmod 12) + floor ( k / 12);
jk = s – floor ( mk / s) + ( mk + Ncbps – floor (12 mk / Ncbps)) mod s, (6)
k = 0… Ncbps – 1,
где mk и jk – номер исходного бита после первой и второй стадии перемежения, соответственно;
Ncbps – число кодированных бит в OFDM-символе (при заданном числе субканалов),
s – 1/2 числа бит на несущую (1 / 2 / 4 / 6 бит для BPSK / QPSK / 166QAM / 646 QAM, соответственно, для BPSK s= 1).
Функция floor ( x) – это наибольшее целое число, не превосходящее x; функция ( x mod r) – остаток от x/ r.
Рисунок 10 - Генерация модулирующей последовательности для пилотных несущих.
Каждой группе ставится в соответствие значения Q и I из векторных диаграмм Грея (рисунок 10), которые затем используются при непосредственной модуляции несущей.
Пилотные несущие модулируются посредством BPSK.
После определения модуляционных символов посредством ОБПФ вычисляется сам радиосигнал и передается в передатчик. При приеме все процедуры производят в обратном порядке. В режиме OFDM на физическом уровне для сетей с архитектурой "точка6многоточка" кадровая структура передачи принципиально мало чем отличается от режима SC. Так же как и в высокочастотной области, информационный обмен происходит посредством последовательности кадров (фреймов). Каждый фрейм (рис.6) делится на два субкадра – нисходящий (DL – от БС к АС) и восходящий (UL – от АС к БС). Разделение на восходящий и нисходящий каналы – как временное (TDD), так и частотное (FDD). В последнем случае DL и UL транслируются одновременно, в разных частотных диапазонах.
Нисходящий субкадр включает преамбулу, управляющий заголовок кадра (FCH – frame control header) и последовательность пакетов данных. Преамбула в нисходящем канале – посылка из двух OFDM6символов (длинная преамбула), предназначенная для синхронизации. Первый OFDM6символ использует несущие с индексами, кратными 4, второй – только четные несущие (модуляция – QPSK).
За преамбулой следует управляющий заголовок кадра – один OFDM6символ с модуляцией BPSK и стандартной схемой кодирования (скорость кодирования – 1/2). Он содержит так называемый префикс кадра нисходящего канала (DLFP – Downlink Frame Prefix), который описывает профиль и длину первого (или нескольких начальных) пакета в DL6субкадре.
В первый пакет входят широковещательные сообщения (предназначенные всем АС) – карты расположения пакетов DL-MAP, UL-MAP, дескрипторы нисходящего/восходящего каналов DCD/UCD, другая служебная информация. Каждый пакет обладает своим профилем (схема кодирования, модуляция и т.д.) и передается по средством целого числа OFDM6символов. Точки начала и профили всех пакетов, помимо первого, содержатся в DL-MAP.
Рисунок 11 – Структура OFDM-кадров при временном дуплексировании.
Нисходящий субкадр содержит интервал конкурентного доступа, включающий периоды для начальной инициализации АС (вхождение в сеть) и для запроса полосы передачи. Далее следуют временные интервалы, назначенные базовой станцией определенным абонентским станциям для передачи. Распределение этих интервалов (точки начала) содержится в сообщении UL-MAP. АС в своем временном интервале начинает трансляцию с передачи короткой преамбулы (один OFDM6символ, использует только четные несущие). За ним следует собственно информационный пакет, сформированный на МАС6уровне.
Длительность OFDM-кадров может составлять 2,5; 4; 5; 8; 10; 12,5; и 20 мс. Заданный базовой станцией, период построения кадров не может изменяться, поскольку в этом случае потребуется ресинхронизация всех АС.
Запрос на установление соединения не отличается от общепринятого в стандарте IEEE 802.16, за исключением дополнительного режима "концентрированного" запроса (Region-Focused). Он предназначен только для станций, способных работать с отдельными субканалами. В этом режиме в интервалах конкурентного доступа (заданных в UL-MAP) АС может передать короткий 46разрядный код на одном из 48 субканалов, каждый из которых включает четыре несущих. Всего предусмотрено восемь кодов. Таблица кодов и подканалов приведена в тексте стандарта IEEE 802.16. Код и номера канала АС выбирает случайным образом.
Получив кодовое сообщение, БС предоставляет АС интервал для передачи "обычного" запроса на предоставление доступа (заголовка запроса МАС6уровня) – если это возможно. Однако в отличие от других механизмов, БС в UL6MAP не указывает идентификатор запросившей ее станции, а приводит номера кода запроса, подканала, а также порядковый номер интервала доступа, в течение которого был передан запрос. По этим параметрам АС и определяет, что интервал для запроса полосы передачи предназначен ей. Выбор момента для передачи 46разрядного кода запроса доступа происходит случайным образом, по описанному выше алгоритму обращения к каналу конкурентного доступа.
Отметим, что в режиме OFDM канальный ресурс может предоставляться не только во временной области, но в отдельных подканалах (группах подканалов), если БС и абонентские станции поддерживают такую возможность. Одно из наиболее важных применений такой опции – Mesh-сеть.
3.2 MESH-сеть
Формально Mesh-сеть – это вид топологии сети IEEE 802.16 в режиме OFDM, и ее физический уровень – это OFDM. Поэтому различия Mesh6сети с уже рассмотренными режимами проявляются не только, да и не столько на физическом уровне. Основное отличие Mesh6сети от рассматриваемой до сих пор архитектуры "точка6многоточка" – в том, что если в последнем случае АС может общаться только с БС, то в Mesh6сети возможно взаимодействие непосредственно между АС. Поскольку сети стандарта IEEE 802.16 ориентированы на работу с широкими частотными каналами, Mesh6сети вошли в стандарт вовсе не с целью создания одноранговых локальных сетей – для этого есть стандарты группы IEEE 802.11. Причина в ином – необходим инструмент построения широкополосной сети, в которой трафик может передаваться по цепочке из нескольких станций, ликвидируя тем самым проблемы передачи при отсутствии прямой видимости. Соответственно и все механизмы управления, в принципе позволяющие построить децентрализованную распределенную сеть, ориентированы все же на древовидную архитектуру, с выделенной базовой станцией (корневой узел) и доминирующими потоками БС-АС. В Mesh6сети все станции (узлы) формально равноправны. Однако практически всегда обмен трафика Mesh-сети с внешним окружением происходит через один определенный узел (рис.7). Такой узел называют базовой станцией Mesh-сети, именно на него возлагается часть необходимых для управления Mesh-сетью функций. При этом управление доступом может происходить либо на основе механизма распределенного управления, либо централизованным способом, под управлением БС. Возможна и комбинация этих методов.