Смекни!
smekni.com

Разработка алгоритмического и программного обеспечения ситуационного управления безопасностью магистральных газопроводов (стр. 3 из 11)

Понятие критичности близко к понятию риска и может быть использовано при более детальном количественном анализе риска аварии. Определение параметров критичности необходимо для выработки рекомендаций и приоритетности мер безопасности.

В табл.2.1 приведены рекомендуемые показатели уровня и критерии критичности по вероятности и тяжести последствий отказа. При этом необходимо выделять четыре группы, которым может быть нанесен ущерб от аварии: персонал, население, окружающая среда, материальные объекты.

Таблица 2.1 - Пример матрицы "Вероятность - тяжесть последствий"

Ожидаемая частота возникновения (1/год) Тяжесть последствий
Катастро-фический отказ Крити-ческий отказ Некри-тический отказ Отказ с прене-брежимо малыми послед-ствиями
1 2 3 4 5 6
Частый отказ >1 А А А С
Вероятный отказ 1-
А А В С
Возможный отказ
-
А В В Д
Редкий отказ
-
А В С Д
Практически невероятный отказ <
В С С Д

Ранг А соответствует наиболее высокой (неприемлемой) степени риска объекта, требующей незамедлительных мер по обеспечению безопасности. Показатели В, С отвечают промежуточным степеням риска, а ранг Д - наиболее безопасным условиям.

Метод применяется для анализа проектов сложных технических систем или при модификации опасных производств.

Метод ранжирования опасностей и определения степени риска промышленного объекта является смешанным количественным методом, сочетающим численные методы с экспертными оценками в виде штрафов в зависимости от опасности веществ и материалов, используемых в технологических процессах. Метод применяют для оценки потенциальной опасности узлов технологического оборудования в зависимости от характера и условий протекания технологических процессов и категорирования по критериям взрыво-, пожароопасности и токсичности. Таким образом, метод косвенно применим для количественной оценки экологических последствий.

Крупные аварии, как правило, характеризуются комбинацией случайных событий, возникающих с различной частотой на разных стадиях возникновения и развития аварии. Для выявления причинно-следственных связей между этими событиями используют логико-графические методы анализа "Деревьев отказов" и "Деревьев событий".

При анализе "деревьев отказов" выявляются комбинации отказов (неполадок) оборудования, инцидентов, ошибок персонала и нерасчетных внешних воздействий, приводящих к головному событию (аварийной ситуации). Метод используется для анализа возможных причин возникновения аварийной ситуации и расчета ее частоты (на основе знания частот исходных событий).

Анализ "дерева событий" - алгоритм построения последовательности событий, исходящих из основного события (аварийной ситуации). Частота каждого сценария развития аварийной ситуации рассчитывается путем умножения частоты основного события на условную вероятность конечного события.

Конечным результатом оценки риска является перечень исходов для каждого рассматриваемого случая, при этом рассчитываются частота и последствия, т.е. величины ожидаемых последствий. Суммирование произведений из всех последствий определяет серьезность аварии.

Количественный анализ риска наиболее эффективен на стадии проектирования и размещения опасных объектов; при оценке безопасности объектов, имеющих однотипное оборудование (в частности, магистральные газопроводы); при необходимости получения комплексной оценки воздействия аварий на людей, материальные объекты и окружающую природную среду.

Недостатками количественного анализа риска являются невысокая точность результатов, вследствие чего использование количественных показателей (в частности, вероятности возникновения аварии) в качестве критериев безопасности для сложных производств, какими являются магистральные газопроводы, как правило, не оправдано.

Для анализа или модернизации сложных проектов (в частности, управления безопасностью магистральных газопроводов) целесообразно применять методы анализа "деревьев отказов" и "деревьев событий".

Объекты транспорта газа относятся к организационно-ситуационным и обладают рядом свойств, отличающих их от традиционных объектов управления: уникальностью, неформализованностью описания, функциональной ситуационностью, неполнотой исходной информации. При работе с такими объектами не эффективно использовать традиционные методы управления, поэтому целесообразно применять ситуационный подход.

2.2 Идентификация опасностей

Установлено, что расследуется и анализируется не более 20-30% от общего количества аварийных ситуаций. Кроме того, нередко допускаются неточности в классификации аварийных ситуаций, таких как "утечки" или неполадки. Поэтому возникает необходимость правильно и полно классифицировать возможные отказы линейной части магистральных газопроводов.

Отказы разделяются по нескольким критериям.

По этапам формирования: проектный, производственный, эксплуатационный.

По виду отказавшего конструктивного элемента: отказ трубных секций, сварных соединений, изоляционного покрытия, траншей, балластирующих устройств, грунтовой засыпки, ЭХЗ.

По влиянию на эффективность функционирования магистрального газопровода: полный отказ, частичный отказ.

По взаимному влиянию отказов: зависимый и независимый.

По последствиям отказов: отказ с незначительными, значительными и критическими последствиями.

Отказ линейной части магистрального газопровода наступает в основном из-за совокупного влияния дефектов конструктивных элементов.

Регистрируемые в настоящее время отказы линейной части магистрального газопровода являются в основном отказами двух его основных конструктивных элементов - металла трубопровода или сварных соединений.

Классификация дефектов трубных секций представлена на рис.2.2.


Рисунок 2.2 - Классификация дефектов трубных секций

Классификация дефектов сварных швов представлена на рис.2.3.

Рисунок 2.3 - Классификация дефектов сварных соединений

Различают отказы двух принципиально разных групп:

Отказ линейной части магистрального газопровода вследствие отказа металла трубных секций или отказа сварных соединений - элементы группы А.

Отказ линейной части магистрального газопровода вследствие отказа остальных конструктивных элементов, выражающийся в потере герметичности металла трубных секций или металла сварных соединений - элементы группы Б.

Число состояний объекта, состоящего из семи конструктивных элементов, находящихся в одном из двух состояний - работоспособном и неработоспособном - равно:

. Так как к отказу могут привести только такие комбинации отказовых состояний, при которых имеет место отказ металла или сварного соединения, то количество отказовых состояний равно

.

Значит, 31 состояние системы приводит к отказам магистрального газопровода.

Отказовое состояние регистрируется в случаях:

разрушения основного металла труб;

разрушения сварных соединений газопровода.

Причем

, где
- вероятность отказа из-за разрушения металла труб,
- вероятность отказа из-за разрушения сварных соединений.

В свою очередь,

, где

- вероятности отказа из-за прямого отказа конструктивных элементов группы А;

- вероятности отказа из-за отказов конструктивных элементов группы Б.

На основе статистических данных установлено, что

,
. Следовательно,
.

На основе полученных данных можно прогнозировать среднее время безотказной работы магистральных газопроводов.

Для реализации концепции принятия решения с целью воздействия на факторы риска с позиции мотивации безопасной деятельности необходимо использовать метод, обеспечивающий сравнение факторов на основе какого-либо рода экспертных оценок - метод анализа иерархий, состоящий в декомпозиции проблемы на более простые составляющие части и дальнейшей обработке последовательности суждений лиц, принимающих решение, по парным сравнениям.