Смекни!
smekni.com

Разработка алгоритмического и программного обеспечения ситуационного управления безопасностью магистральных газопроводов (стр. 7 из 11)

Обобщение может происходить на многих этапах, и поэтому исходные описания ситуаций и обобщенные их описания образуют иерархическую структуру, в каждом слое которой находятся описания, полученные из исходных с помощью тех или иных процедур обобщения. Если исходные описания принять за нулевой уровень, то на первом уровне будут находиться описания, полученные непосредственно из описаний ситуаций, лежащих на нулевом уровне. На второй уровень попадут описания, которые возникнут за счет применения процедур обобщения к описаниям первого уровня и т.д. Возникает как бы "слоеный пирог". Ситуации на всех уровнях соответствуют некоторым решениям по управлению. В идеале на самом верхнем уровне системы классификации возникают описания, каждому из которых соответствует определенное решение по управлению.

Когда Классификатор сформирован, то его работа заключается в следующем. Если на вход системы управления поступает некоторая конкретная ситуация, то она обогащается за счет работы процедур пополнения описаний ситуаций и поступает на нулевой уровень "слоеного пирога". С помощью вертикальных связей она обобщается до наивысшего возможного уровня. Если на этом уровне ей соответствует решение по управлению, то оно поступает из Классификатора в Коррелятор. Если же при невозможности дальнейшего обобщения данному уровню не соответствует никакого решения, то Классификатор переходит в стадию обучения.

Функциональная структура Классификатора представлена на рис.3.3.


Рисунок 3.3 - Схема функциональной структуры Классификатора

Как отмечалось ранее, планировщики формируют последовательность решений, с помощью которой можно перевести текущую ситуацию в некоторую целевую. Планировщики сначала формируют план, затем проверяют его выполнимость и эффективность, отбирают среди сформированных наилучший план, начинают его выполнение и при необходимости корректируют план при поступлении дополнительной информации от объекта управления и окружающей среды.

В данной работе используется планирование по состояниям. Понятие состояния складывается из состояния объекта управления и состояния окружающей среды. Построение плана происходит в пространстве состояний таким образом, что каждое одношаговое решение по управлению переводит систему из одного состояния в другое. План представляется в этом случае некоторой траекторией в пространстве состояний.

Задачу планирования по состояниям можно описать некоторой моделью, представленной на рис.3.4.


Рисунок 3.4 - Сеть вывода управляющего решения

При планировании в пространстве состояний необходимо найти путь, ведущий из начальной вершины (1) в какую-нибудь из вершин, символизирующих целевые ситуации или конечные состояния (9, 10 или 11). Таким образом, все разветвления в вершинах считаются альтернативными. Надо выбрать одно (любое) продолжение движения.

Совокупность дедуктивного вывода, описание модели функционирования магистрального газопровода, связанных с ней программных модулей и закономерностей функционирования магистрального газопровода вместе с процедурами их проверки образуют интеллектуальный пакет прикладных программ. В виде такого пакета в данном случае выступает Коррелятор. Его основная компонента - набор логико-трансформационных правил вида:

, где

- описание фрагмента текущей ситуации, наличие которого определяет применимость логико-трансформационного правила;

- описание преобразуемого фрагмента;

- результирующее описание нового фрагмента описания.

Если рассматривать

,
и
как дескрипторы, а
как некоторый спецификатор, то легко установить соответствие между функциональными моделями и набором логико-трансформационных правил, хранящихся в базе знаний.

В задаче управления безопасностью магистральных газопроводов переходы между состояниями в пространстве состояний недетерминированы, что отражает неполноту знаний о возможностях таких переходов. В этом случае дуги сети, на которой производится планирование, взвешиваются значениями функции принадлежности.

В идеале необходимо получить прогноз развития событий на уровне описания тех ситуаций, которые могут возникнуть в будущем. То есть необходимо получить экстраполяцию в виде перевернутого дерева, показанного на рис.3.5 Его корень соответствует ситуации на объекте в данный момент времени. Если в качестве решения планируется

, то последующие ярусы дерева показывают те ситуации, в которые может попасть объект в результате реализации именно данного решения. Ветвление дерева соответствует той неопределенности, с которой можно представить процесс развертывания событий. Около каждой ситуации, лежащей на концевых ветвях дерева, проставлены оценки
, характеризующие возможность такого исхода.

Рисунок 3.5 - Дерево экстраполяции управленческих решений.

Если в исходной ситуации кроме решения

можно использовать некоторые другие решения, то для всех них строится имитационный процесс, порождающий свое дерево такого же типа, как на рис.3.5 Далее по некоторому решающему правилу оцениваются полученные в результате моделирования оценки
и выбирается то решение
, для которого решающее правило дает наилучший результат.

Особенность описанного метода состоит в том, что при моделировании каждый раз имеется описание получаемой ситуации, а, значит, ее можно классифицировать с помощью Классификатора и оценивать ее конфликтность или неконфликтность для управления объектом.

3.3 Схема программы управления безопасностью магистральных газопроводов

Схема программы формирования дерева событий и определения пути движения по нему (поиск наиболее вероятного сценария развития событий) приведена на рис.3.6.

Поиск наименее вероятного сценария развития событий осуществляется аналогично, с той лишь разницей, что рассчитывается минимальная вероятность для выбранного следствия, а затем выбирается наименьшая из текущей и предыдущей.

По этой же схеме определяется сценарий развития событий с максимальным /минимальным ущербом. Отличие состоит в том, что рассчитывается значение не вероятности, а возможного совокупного коэффициента ущерба.


Рисунок 3.6 - Схема процесса формирования дерева событий и поиска пути движения по нему.


4. Программное обеспечение ситуационного управления безопасностью магистральных газопроводов

4.1 Описание программы управления безопасностью магистральных газопроводов

Программа предназначена для работы в операционных средах MicroSoft Windows 98/NT/XP. Windows обеспечивает удобный и наглядный интерфейс для осуществления операций с файлами, дисками и т.д. А также позволяет приложениям взаимодействовать с дисплеем, клавиатурой, мышью вне зависимости от конкретной модели устройства. Такая независимость от аппаратуры позволяет одному и тому же приложению работать на компьютерах с различной аппаратной конфигурацией.

В качестве среды программирования была выбрана Delphi 7.

Данный язык создает программы для операционной системы Windows, обеспечивает полную поддержку всех возможностей предоставляемых системой. Язык является полностью объектно-ориентированным, что позволяет легко моделировать необходимые модули программы. Большинство необходимых визуальных элементов уже встроены в оболочку и легко переносятся в проект. Основная концепция Delphi - это многомодульность. Объектно-ориентированный язык Delphi 7 позволяет сократить количество межмодульных вызовов и уменьшить объем информации, передаваемой между модулями, по сравнению с модульным программированием.

Программное обеспечение "МАГ" представлено следующими модулями:

Модуль формирования узлов дерева;

Модуль обработки степени доверия;

Модуль вопросов об объектах;

Модуль использования правил базы знаний;

Модуль поиска пути движения по дереву.

Модуль формирования узлов дерева выполняет следующие функции:

1) создание нового узла в вершине дерева (см. рис.4.1);

Рисунок 4.1 - Схема создания нового узла в вершине дерева

2) вставка узла в дерево после указанного узла (см. рис.4.2);

Рисунок 4.2 - Схема процесса вставки узла в дерево после указаного.