Изменение количества движения системы за время dt:
(мы отбросили член второго порядка малости
Отсюда, перегруппировав члены и разделив на dt, получим основное уравнение движения точки переменной массы:
Это уравнение иначе называют уравнением Мещерского. Для ракеты
Второй член правой части равенства (1.23) представляет собой реактивную силу, действующую на массу M со стороны вылетевшей частицы dM.
Для любого момента времени произведение массы тела на его ускорение равно векторной сумме равнодействующей приложенных к телу внешних сил и реактивной силы. При движении ракеты вблизи Земли равнодействующая внешних сил представляет собой сумму силы тяжести и силы сопротивления воздуха. Ускорение ракеты зависит еще и от реактивной силы, изменяя величину и направление которой можно управлять полетом ракеты.
Если относительная скорость отбрасываемых частиц равна нулю:
т. е. если относительная скорость отбрасываемых частиц равна нулю, то уравнение движения точки переменной массы имеет формально тот же вид, что и для точки постоянной массы, но в этом случае масса M- функция времени t.
Важный вклад в механику тел переменной массы применительно к конкретным задачам реактивной техники внесен знаменитым русским ученым Константином Эдуардовичем Циолковским. В 1903 г. была издана его работа «Исследование мировых пространств реактивными приборами», в которой К. Э. Циолковский исследовал ряд случаев прямолинейных движений ракет. К. Э. Циолковским обоснована и доказана возможность практического использования реактивного движения. Им найдены условия, при которых можно получить скорости, достаточные для осуществления космического полета. Полученная им формула, связывающая скорость ракеты с ее начальной массой, до сих пор используется для предварительных расчетов. В работах 1911-1914 гг. он изучил вопрос о величине запасов топлива, необходимых для преодоления сил тяготения Земли, и предложил высококалорийное топливо, позволяющее получить большие скорости истечения газовых струй. К. Э. Циолковского по праву считают изобретателем жидкостных ракет дальнего действия и основоположником теории межпланетных полетов.
Ему принадлежит идея разработки теории так называемых многоступенчатых ракет, когда на некоторых интервалах времени масса ракеты меняется непрерывно, а в некоторые моменты – скачком. Им проведены большие исследования по оценке сил сопротивления при движении тел переменной массы. К. Э. Циолковским поставлен целый ряд оригинальных проблем, имеющих решающее значение для развития реактивной техники.
Для того чтобы выяснить основные факторы, создающие возможность реактивного движения с большими скоростями, рассмотрим движение точки переменной массы безвоздушном пространстве (отсутствует сопротивление движению тела), без действия внешних сил (силы тяготения) . предположим, что скорость истечения частиц направлена прямо противоположно вектору скорости тела
При сформулированных условиях уравнение движения приобретает вид:
или
Положим,
Для определения постоянной С учетом, что при
и
Эта формула носит название формулы Циолковского. Из формулы следует, что скорость, приобретенная точкой переменной массы, зависит от относительной скорости V и отношения начальной массы к остающейся к концу процесса горения. Если масса точки в конце процесса горения
Отношение
Из формулы Циолковского (1.27) следует , что:
1) Скорость точки переменной массы в конце активного участка (в конце процесса отбрасывания частиц) тем больше, чем больше скорость отбрасывания частиц;
2) Скорость в конце активного участка тем больше, чем больше число Циолковского;
3) Скорость точки переменной массы в конце активного участка не зависит от закона изменения массы (режима горения). Заданному числу Циолковского соответствует определенная скорость точки в конце процесса горения не зависимо от того, быстро или медленно шло горения. Это следствие является проявлением закона сохранения количества движения;
4) Для получения возможно больших скоростей точки переменной массы в конце активного участка выгоднее идти по пути увеличения относительной скорости отбрасывания частиц, чем по пути увеличения запасов топлива.
§1.2 Некоторые задачи моделирования механических систем (на примере движение тела с переменной массой)
Имеется много случаев, когда масса тела изменяется в процессе движения за счет непрерывного отделения или присоединения вещества (ракета, реактивный самолет, платформа, нагружаемая на ходу, и др.).
Наша задача: найти уравнение движения такого тела.
Рассмотрим решение этого вопроса для материальной точки, называя ее для краткости телом. Пусть в некоторой момент времени
Введем вспомогательную инерциальную K-систему отсчета, скорость которой такова же, как и скорость тела A в данный момент
Пусть далее за промежуток времени от