где знак плюс соответствует присоединению массы, а знак минус – отделению. Оба эти случая можно объединить, представив
Поделив это выражение на
где
Это уравнение является основным уравнением динамики материальной точки с переменной массой. Его называют уравнением Мещерского. Будучи полученным в одной инерциальной системе отсчета, это уравнение в силу принципа относительности справедливо и в любой другой инерциальной системе. Заметим , что если система отсчета неинерциальная, то под силой F следует понимать результирующую как сил взаимодействия данного тела с окружающими телами, так и сил инерции.
Последний член уравнения (1.26) носит название реактивной силы:
Уравнение Мещерского по своей форме совпадает с основным уравнением динамики материальной точки постоянной массы: слева – произведение массы тела на ускорение, справа – действующие на него силы, включая реактивную силу. Однако в случае переменной массы нельзя внести массу
Обратим внимание на два частных случая.
1. Если u=0. т. е. масса присоединяется или отделяется без скорости относительно тела, то R=0, и уравнение (1.26) принимает вид
где
2. Если u=-v, т. е. присоединяемая масса неподвижна в выбранной системе отсчета или отделяемая масса становится неподвижной в этой системе, то уравнение (1.28) принимает другой вид
или
иначе говоря, в этом частном случае – и только этом – действие силы F определяет изменение импульса тела с переменной массой. Данный случай реализуется, например, при движении платформы, нагружаемой сыпучим веществом из неподвижного бункера (см. задачу 10, пункт 2-й).
Рассмотрим пример на применение уравнения Мещерского.
Пример. Ракета движется в инерциальной K-системе отсчета в отсутствие внешнего силового поля, причем так, что газовая струя вылетает с постоянной относительно ракеты скоростью u. Найти зависимость скорости ракеты от ее массы
В данном случае F=0 и из уравнения (1.28) следует
Проинтегрировав это выражение с учетом начальных условий, получим
где знак минус показывает, что вектор v (скорость ракеты) противоположен по направлению вектору u. Отсюда видно, что скорость ракеты в данном случае (u=const) не зависит от времени сгорания топлива: v определяется только отношением начальной массы
Заметим, что если бы вся масса горючего была одновременно выброшена со скоростью u относительно ракеты , то скоростью последней оказалась бы иной. Действительно, если ракета вначале покоилась в выбранной инерциальной системе отсчета, а после одновременного выброса всего горючего приобрела скорость v, то из закона сохранения импульса для системы ракета – горючее следует
где u+v - скорость горючего относительно данной системы отсчета. Отсюда
скорость ракеты v в этом случае оказывается меньше, чем в предыдущем (при одинаковых значениях отношения
Задачи к главе 1
1.1. Частица движется с импульсом
1)
2)
Решение. 1. Сила
2. Приращение вектора p за промежуток времени
где, по условию,
|
Рис. 6
1.2. Через блок (рис. 6) перекинут шнур на одном конце которого находится лестница с человеком А, а на другом – уравновешивающий груз массы М. Человек , масса которого m, совершил вверх перемещение