МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования "Гомельский государственный университет имени Франциска Скорины"
Математический факультет
Кафедра МПУ
Разработка имитационной модели транспортной сети
Курсовая работа
студентка группы ПМ-44
Бутакова О.В.
доцент кафедры МПУ Сукач Е.И.
Гомель 2007
Содержание
Введение
1. Имитационное моделирование для рациональной организации транспортных потоков
1.1 Актуальность использования имитационной модели для исследования потоков в железнодорожной сети
1.2 Описание модели железнодорожной сети
1.3 Алгоритм Форда-Фалкерсона для нахождения максимального потока в сети
1.4 Метод Монте-Карло
2. Имитационная моделЬ железнодорожной сети
2.1 Формализация модели железнодорожной сети
2.2 Алгоритм работы модели железнодорожной сети
2.3 Решение тестовых задач с помощью имитационной модели
Заключение
Список использованных источников
Приложение
Листинг программы
По причине увеличения транспортных потоков в железнодорожной сети актуальной является проблема их рациональной организации. Однако с учетом влияния различных факторов, таких как загруженность участка дороги, состояния дороги, наличия внутренних потоков, данная задача не может быть решена с помощью аналитических моделей, основанных на графовых моделях.
Поэтому актуальна разработка компьютерных моделей, позволяющих учесть все перечисленные случайные факторы, и рационально организовать потоки в железнодорожной сети.
Для реализации курсовой работы необходимо решить следующие частные задачи:
актуальность использования имитационной модели для исследования потоков транспортной сети;
составление списков входных и выходных параметров имитационной модели железнодорожной транспортной сети;
разработка и реализация алгоритма имитационной модели;
решение тестовых задач с помощью имитационной.
В первой главе представлены: теоретический материал для разработки имитационной модели железнодорожной сети, ее актуальность, алгоритм Форда-Фалкерсона, метод Монте-Карло.
Во второй главе представлены формализация имитационной модель, описание водных и выходных значений, блок-схема алгоритма, тестирование модели и в приложении листинг программы.
В наше время за счёт резкого увеличения числа транспортных средств в сетях дорог существенно возросли требования к рациональной организации транспортных потоков. Сама сеть дорог может быть представлена в виде графа, состоящего из узлов и дуг. Каждое ребро графа, соответствующее участку дороги, характеризуется длиной, пропускной способностью и стоимостью проезда по нему единицы транспортного средства. На пропускную способность ветви графа влияет скорость передвижения единицы транспорта, которая в свою очередь зависит от многих факторов, среди которых наиболее важными являются загруженность участков пути, состояние дорожного покрытия, условия внешней среды. Загруженность на различных участках дороги бывает различной и зависит от наличия внутренних транспортных потоков на данном участке, которые могут рассматриваться как помехи при передвижении транспортной единицы из начального пункта сети в конечный пункт. Состояние дороги определяется её изношенностью, условиями эксплуатации, влиянием погодных условий. Параметры внешней среды изменяются в зависимости от времени года, времени суток и подвержены влиянию погодных воздействий. Значения факторов, определяющих рациональную организацию транспортных потоков в сети, изменяются во времени. Наличие внутренних транспортных потоков на каждом участке сети носит вероятностный характер. Отдельные участки транспортной сети изменяют своё состояние (изнашиваются) с разной интенсивностью. Параметры внешней среды периодически изменяются. При управлении следует учитывать, что в реальной транспортной сети перечисленные факторы являются взаимосвязанными.
При управлении потоками в транспортной сети, как правило, находят оптимальное распределение транспортного потока по ветвям сети, оценивают максимальный поток в сети и находят кратчайший путь между заданными входом и выходом, выявляют узкие места в сети с целью их своевременной ликвидации. Одновременно с этими задачами оценивают суммарные затраты транспортных средств при их движении из начального пункта в конечный.
Наличие случайных факторов, влияющих на состояние транспортной сети, не позволяет решать перечисленные задачи с использованием известного аппарата, основанного на аналитических моделях, называемых графовыми моделями. Особенно большие трудности у исследователей вызывает определение узких мест в сети при наличии транспортных потоков относящихся к различным направлениям и вероятностных внутренних потоков на отдельных участках сети, которые могут приводить к увеличению числа аварий и возникновению “пробок".
Исходя из выше изложенного, в качестве выхода из положения исследователи вынуждены прибегать к имитационному моделированию транспортных потоков в сети дорог с учетом случайных факторов.
Структуру транспортных потоков в железнодорожной сети можно представить в виде графа Gh, где h-вариант организации транспортных потоков в железнодорожной сети. Перевозки в сети реализуются в соответствии со следующими параметрами, определяемыми матрицами:
; ; ; , (1. 1)где cij - пропускные способности ветвей графа Gh, соединяющих узел i с узлом j; lij - расстояния между узлами i и j;
- начальный поток по ветви ij; qij - стоимость единицы пути движения транспортного средства по ветви ij. Определёно множество входов в сеть , и множество выходов из сети , в одном направлении. В сети кроме транзитных потоков существуют внутренние транспортные потоки на отдельных отрезках дороги в одну и другую сторону, которые снижают пропускные способности ветвей графа Gh. Величины внутренних транспортных потоков для ij-ых участков определяются функциями распределения . Пропускные способности ветвей ij графа Gh с учётом внутренних потоков изменяются и представляют собой случайные величины, определяемые с помощью функций распределения .В каждом узле железнодорожной сети происходят процессы формирования-расформирования составов. Длительность этих процессов, как правило, носит вероятностный характер и описывается функциями распределения. Функции распределения для каждого i-ого узла сети задаются матрицей , где каждый элемент матрицы есть функция распределения времени на формирование-расформирование в i-ом узле для состава, пришедшего с узла k и следующего в узел j. Матрица имеет вид: