Рисунок 4.5 - Кривые четвертой степени
Благодаря простоте задания и возможности удобно манипулировать формой, кривые Безье нашли широкое применение в компьютерной графике для моделирования гладких линий. Поскольку кривая полностью определяется своей выпуклой оболочкой из опорных точек, последние могут быть отображены и использоваться для наглядного управления формой линии. Кроме того, аффинные преобразования кривой (перенос, масштабирование, вращение) также легко могут быть осуществлены путём применения трансформаций к опорным точкам. Наличие выпуклой оболочки значительно облегчает задачу о точках пересечения кривых Безье: если не пересекаются выпуклые оболочки, то не пересекаются и сами кривые .
Наибольшее значение имеют кубические кривые Безье [1]. Кривые высших степеней при обработке требуют большего объёма вычислений и для практических целей используются реже. Для построения сложных по форме линий отдельные кривые Безье могут быть последовательно соединены друг с другом в сплайн Безье. Для того чтобы обеспечить гладкость линии в месте соединения двух кривых, смежные опорные точки обеих кривых должны лежать на одной линии [4]. Существует три программного метода построения:
a) public void DrawBezier(Pen, Point, Point, Point, Point);
b) public void DrawBezier(Pen, PointF, PointF, PointF, PointF);
c) public void DrawBezier(Pen, float, float, float, float, float, float, float, float);
Рисунок 4.6 - Программная реализация
4.2 Кубические сплайны
В отличие от только что описанных кривых линий Безье, линии кубического сплайна (cardinal spline) проходит через все заданные точки [3]. Построение осуществляется по шагам приведенным ниже: запишем для удобства Si(x) в виде: