Для реализации точечных методов преобразования создаём класс CdotFilter (Листинг 3.7.1).
Листинг 3.7.1 – Базовый класс для точечных фильтров CdotFilter. Файл Filter.h
//Базовый класс для точечных фильтров
class CDotFilter: public CFilter
{
protected:
//Таблицы преобразования для компонентов цвета
BYTE BGRTransTable[3][256];
public:
//Метод преобразования пиксела
BOOL TransformPix(LONG x, LONG y);};
Данными этого класса являются три таблицы преобразования компонентов RGB цвета.
Для точечного фильтра переопределён метод . Реализация метода приведена в листинге 3.7.2
Листинг 3.7.2 – Метод CDotFilter:: TransformPix (). Файл Filter.cpp
BOOL CDotFilter::TransformPix(LONG x, LONG y)
{BYTE *pDPix=NULL, *pSPix=NULL;
// Источник необходим
if(m_pSourceBM==NULL)
return FALSE;
//Если приёмник не задан, то преобразование помещаем в источник
if(m_pDestBM==NULL)
m_pDestBM=m_pSourceBM;
// Получаем указатели на пикселы в источнике и приёмнике
if((pDPix=m_pDestBM->GetPixPtr(x, y))==NULL ||
(pSPix=m_pSourceBM->GetPixPtr(x, y))==NULL)
return FALSE;
// Преобразование. Порядок BGR
*pDPix=BGRTransTable[0][*pSPix];
*(pDPix+1)=BGRTransTable[1][*(pSPix+1)];
*(pDPix+2)=BGRTransTable[2][*(pSPix+2)];
return TRUE; };
Хотя формат 24-битового цвета называют RGB, в файле формата BMP компоненты цвета хранятся в обратном порядке (Порядок BGR).
В производных от CDotFilter классах останется реализовать инициализацию таблиц преобразования.
Для реализации пространственных (матричных) методов преобразования создаём класс CMatrixFilter. Интерфейс класса приведён в листинге 3.7.3
Листинг 3.7.3 – Интерфейс базового для матричных фильтров класса CmatrixFilter. Файл Filter.h
// Пространственные (матричные фильтры)
// Базовый класс
class CMatrixFilter: public CFilter
{
protected:
int m_rangX; // размер матрицы по X и Y
int m_rangY;
const int *m_pMatrix; // указатель на матрицу
public:
//Методпреобразования пиксела
BOOL TransformPix(LONG x, LONG y); };
Данными этого класса являются размер матрицы преобразования и указатель на матрицу. Размер мртрицы определяет зону пикселов, окружающих пиксел (x,y), которая будет вовлечена в расчёт нового значения пиксела (x,y). Указателю на матрицу преобразования m_pMatrix будет присваиваться адрес матрицы, которая будет использована в преобразовании. Реализация метода CmatrixFilter:: TransformPix() приведена в листинге3.7.4
Листинг 3.7.4 – Метод CmatrixFilter:: TransformPix(). Файл Filter.cpp
// Пространственные фильтры
BOOL CMatrixFilter::TransformPix(LONG x, LONG y)
{BYTE *pDPix=NULL, *pSPix=NULL;
// Источник и приёмник необходимы
if(m_pSourceBM==NULL || m_pDestBM==NULL)
return FALSE;
// Определяем зону перекрытия изображения и матрицы. Это требуется для //обработки пикселов, находящихся на границах изображения
int x_start=0;
int dx=m_rangX/2, dy=m_rangY/2;
if(x-dx<0) x_start=dx-x;
int y_start=0;
if(y-dy<0) y_start=dy-y;
int x_finish=m_rangX;
if(x+dx>m_pSourceBM->GetBMWidth())
x_finish-=(x+dx-m_pSourceBM->GetBMWidth());
int y_finish=m_rangY;
if(y+dy>m_pSourceBM->GetBMHeight())
y_finish-=(y+dy-m_pSourceBM->GetBMHeight());
// Расчёт новых значений цвета пиксела с учётом соседей, попавших в зону //действия матрицы преобразования
int NewBGR[3];
int count=0;
for(int c=0, mx=0, my=0; c<3; c++)
{NewBGR[c]=0; count=0;
for(my=y_start; my<y_finish; my++)
for(mx=x_start; mx<x_finish; mx++)
{if((pSPix=m_pSourceBM->GetPixPtr(x+(mx-dx), y+(my-dy)))!=NULL)
{NewBGR[c]+=(m_pMatrix[my*m_rangX+mx]*(*(pSPix+c)));
count+=m_pMatrix[my*m_rangX+mx]; }}}
// Адрес пиксела в изображении-приёмнике
pDPix=m_pDestBM->GetPixPtr(x, y);
//Установка нового значения в приёмное изображение
for(c=0; c<3; c++)
{
// Приведение значения к допустимому диапазону
if(count!=0)
NewBGR[c]=NewBGR[c]/count;
if(NewBGR[c]<0)
NewBGR[c]=0;
else if(NewBGR[c]>255)
NewBGR[c]=255;
*(pDPix+c)=NewBGR[c]; }
return TRUE; };
В методе CmatrixFilter:: TransformPix() сначала определяется область перекрытия изображения и матрицы преобразования. Этот шаг необходим в связи с тем, что на границах изображения пиксел может не иметь соседей.
Новое значение пиксела формируется с учетом значений всех пикселов и коэффициентов матрицы преобразования, попавших в область перекрытия изображения и матрицы преобразования.
3.6 Фильтр “Яркость/Контраст”
Изменение яркости заключается в изменении интенсивности цвета всех пикселов на заданное значение. Данное преобразование является точечным. Для его реализации добавим в программу класс CBrightCont, производный от класса CDotFilter. Интерфейс класса приведён в листинге 3.6.1
Листинг 3.6.1 – Интерфейс класса CBrightCont. Файл Filter.h
// Яркость/контраст
class CBrightCont: public CDotFilter
{
public:
BOOL Init(int b_offset, int c_offset);
};
Переменные b_offset, c_offset – это объекты, связанные с ползунками, могут принимать положительные и отрицательные значения, что соответствует увеличению или уменьшению яркости/контрастности изображения.
Реализация метода CBrightCont::Init() приведена в листинге 3.6.2 Этот метод инициализирует таблицы преобразования. Сначала выполняется смещение яркости на заданную величину, а затем либо "сжатие", либо "растяжение" диапазона яркости. Причем при сжатии значения яркости изменяются не равномерно, а пропорционально их удаленности от "серой середины", определенной константой CONTRAST_MEDIAN. После преобразования яркости работа по коррекции контрастности происходит со значениями таблицы преобразования, полагая при этом, что они являются индексами в таблице, полученной после коррекции яркости.
Листинг 3.6.2 – Метод CBrightCont::Init().Файл Filter.cpp
// "Серая середина" –уровень 159
#define CONTRAST_MEDIAN 159
BOOL CBrightCont::Init(int b_offset, int c_offset)
{int i=0,//Индекс цвета в таблице преобразований
t=0,//Индекс таблицы
//Индекс цвета, соответствующего нижней границе яркости
t_index=0,
// Индекс цвета, соответствующего верхней границе яркости
b_index=0,
value_offset; //Смещение значения цвета
double value=0.; //Новое значение цвета
//Изменяем яркость
for(i, t=0; t<3; t++)
for(i=0; i<256; i++)
{if(i+b_offset>255) BGRTransTable[t][i]=255;
else if(i+b_offset<0) BGRTransTable[t][i]=0;
else BGRTransTable[t][i]=i+b_offset; }
// Изменяем контрастность
if(c_offset<0)// Уменьшаем контрастность
{for(i=0, t=0; t<3; t++)
for(i=0; i<256; i++)
if(BGRTransTable[t][i]<CONTRAST_MEDIAN)
{
//Рассчитываем смещение в зависимости от удалённости цвета от “серой середины”
value_offset=(CONTRAST_MEDIAN-BGRTransTable[t][i])*c_offset/128;
if(BGRTransTable[t][i]-value_offset>CONTRAST_MEDIAN) BGRTransTable[t][i]=CONTRAST_MEDIAN;
else BGRTransTable[t][i]-=value_offset; }
else
{
// Рассчитываем смещение в зависимости от удалённости цвета от “серой середины”
value_offset=(BGRTransTable[t][i]-CONTRAST_MEDIAN)*c_offset/128;
if(BGRTransTable[t][i]+value_offset<CONTRAST_MEDIAN) BGRTransTable[t][i]=CONTRAST_MEDIAN;
else BGRTransTable[t][i]+=value_offset; }
}
elseif(c_offset>0)
//Увеличиваем контрастность
{ //Расчёт нижней границы цвета
int offset_b=c_offset*CONTRAST_MEDIAN/128;
//Все значения в таблице ниже нижней границы получат значения 0
for(t=0; t<3; t++)
for(b_index=0; b_index<256; b_index++)
{ if(BGRTransTable[t][b_index]<offset_b)
BGRTransTable[t][b_index]=0;
else break; }
// Расчёт верхней границы цвета
int offset_t=c_offset*128/CONTRAST_MEDIAN;
// Все значения в таблице ниже нижней границы получат значения 255
for(t=0; t<3; t++)
for(t_index=255; t_index>=0; t_index--)
{ if(BGRTransTable[t][t_index]+offset_t>255)
BGRTransTable[t][t_index]=255;
else break; }
//Расчёт шага изменения интенсивности цвета
double step=256./(256-(offset_b+offset_t));
// "Растягиваем" интенсивность цветов между нижней и верхней //границами до диапазона 0-255
for(t=0; t<3; t++)
{ value=0.;
for(i=b_index; i<=t_index; i++)
{ if(BGRTransTable[t][i]>=offset_b || BGRTransTable[t][i]<256- offset_t)
{value=(int)((BGRTransTable[t][i]-offset_b)*step+0.5);
if(value>255) value=255;
BGRTransTable[t][i]=(int)(value); }}}}
return TRUE; };
3.7 Фильтр “Инверсия”
Этот фильтр реализуется с помощью таблицы преобразований. Для его реализации добавим в программу класс CInvertColors (листинг 3.7.1), производный от класса CDotFilter.
Листинг 3.7.1 – Интерфейс класса CInvertColors.Файл Filter.h
//Инверсия цветов
class CInvertColors: public CDotFilter
{
public:
CInvertColors(); };
Операция инверсии цветов не требует никаких настроечных параметров, поэтому инициализация таблиц преобразования выполняется в конструкторе класса (листинг 3.7.1).
Листинг 3.7.1 – Конструктор класса CInvertColors .Файл Filter.cpp
CInvertColors::CInvertColors()
{for(int i=0, t=0; t<3; t++)
for(i=0; i<256; i++)
{BGRTransTable[t][i]=255-i; }
};
3.8 Фильтр “Размытие”
Фильтр "Размытие" - это уже пространственное преобразование. Применение этого фильтра оказывает эффект сглаживания деталей изображения. Фильтр реализуется классом CВlur (листинг 3.8.1)
Листинг 3.8.1 – Интерфейс класса CBlur. Файл Filter.h
class CBlur: public CMatrixFilter
{public:
CBlur();
};
Листинг 3.8.2 – Конструктор класса CBlur.Файл Filter.cpp
const int BlurMatrix[25]=
{1,1,1, 1,1,
1,1,1, 1,1,
1,1,1, 1,1,
1,1,1, 1,1,
1,1,1, 1,1
};
CBlur::CBlur()
{m_pMatrix=BlurMatrix;
m_rangX=5;
m_rangY=5; };
Матрица BlurMatrix задаёт преобразование “Размытие”, а в конструкторе CBlur() запоминается её адрес и размер.
3.9 Фильтр “Резкость”
Для повышения четкости изображения в фильтре используется матрица "Размытие". Задача повышения четкости изображения заключается в том, чтобы выделить высокочастотные детали изображения. Светлые детали сделать ярче, темные - темнее. Для этого изображение сначала размывается, а затем определяется разность между размытым изображением и оригиналом. На величину этой разницы изменяется яркость оригинала. Таким образом, однородные участки изображения не подвергнутся изменениям, а те места картинки, где присутствуют высокочастотные детали, станут конрастнее. Фильтр реализуется классом CSharp (листинг 3.9.1).
Листинг 3.9.1 – Интерфейс класса CSharp. Файл Filter.h
class CSharp: public CMatrixFilter
{ public:
CSharp();
BOOL TransformPix(LONG x, LONG y); };
В классе CSharp переопределён метод TransformPix(), реализация метода приведена в листинге 3.9.1.
Листинге 3.9.1 – Методы класса CSharp. Файл Filter.cpp.
CSharp::CSharp()
{ m_pMatrix=BlurMatrix;
m_rangX=5;
m_rangY=5; };
// коэффициент увеличения резкости
#define SHARP_COEFF 3
BOOL CSharp::TransformPix(LONG x, LONG y)
{ //Размыли пиксел
if(!CMatrixFilter::TransformPix(x, y))
return FALSE;
BYTE *pDPix=NULL, *pSPix=NULL;
pSPix=m_pSourceBM->GetPixPtr(x,y);
pDPix=m_pDestBM->GetPixPtr(x, y);
int d=0;
for(int c=0; c<3; c++)
{ // Нашли разницу
d=*(pSPix+c)-*(pDPix+c);
// Усилили разницу
d*=SHARP_COEFF;
// Присвоили пикселу новое значение
if(*(pDPix+c)+d <0)
*(pDPix+c)=0;
else
if(*(pDPix+c)+d > 255)
*(pDPix+c)=255;
else
*(pDPix+c)+=d;}
return TRUE; }
4. ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ
Запуск программы осуществляется при открытии файла BMViewer.exe. На экране появляется окно, представленное на рисунке 4.1.