Смекни!
smekni.com

Разработка программно–алгоритмических средств для определения надёжности программного обеспечения на основании моделирования работы системы типа "клиент–сервер" (стр. 6 из 13)

, где F(x) – функция Лапласа.

2.3.3 Модель для случая N модулей–клиентов

Распространим модель на наиболее часто встречающийся на практике случай, когда каждый модуль–клиент находится в одном из двух состояний: рабочем или нерабочем.о в нерабочем состоянии.

Пусть к серверу может обращаться N клиентов, порождающих N потоков. Каждый поток может находиться в одном из двух состояний:

x1 – рабочий;

x2 – не рабочий (обнаружена ошибка).

Переход модуля из состояния x1 в состояние x2 происходит под действием потока данных (запросов) с интенсивностью l; среднее время восстановления (обнаружения и исправления ошибки в модуле) модуля равно

.

Составим уравнения динамики средних и решим их при условии, что в начальный момент все модули находятся в рабочем состоянии.

Граф состояний каждого модуля имеет вид, показанный на рисунке:

Рисунок 11 – Граф состояния модуля

где: m = N×m’ так как при исправлении ошибки в одном модуле, ошибка мгновенно исправляется во всех остальных модулях тоже;

m1(t) – среднее число функционирующих модулей в момент времени t;

m2(t) – среднее число не функционирующих программных модулей (потоков) в момент времени t.

Уравнение динамики средних будет:

(10)

И начальное условие m1(0) = N при t = 0.

Учтем, что для любого момента времени t выполняется нормировочное условие, из которого следует что:

(11)

Подставляя (1) в первое уравнение из (10), получим:

Решением этого уравнения будет:

(12)

Из (11) и (12) находим m2(t):

(13)

При t ® ¥ имеем стационарный режим:

;

.

Построим на графике функции m1(t) и m2(t).

Для случая программной системы с большим количеством программ N, m будет всегда больше l. Это означает, что среднее количество работающих модулей m1 всегда будет больше среднего числа неработающих модулей m2. Причем в этом случае m = N×m’ и при N ®¥:

,

Отсюда можно сделать вывод, что чем больше пользователей системы (и чем больше количество потоков N), тем она надежнее или тем быстрее станет надежной.

Рисунок 12 – Графики m1(t) и m2(t)

Определим дисперсию численностей состояний из (9):

Очевидно, что дисперсии численности первого и второго состояния будут одинаковыми: D(t) = D2(t) = D1(t).

При t ® ¥

График функции D(t) изображен на рисунке:

Рисунок 13 – График D

Например, в стационарном состоянии для N=200, l = 2 запроса/сутки и

суток получим следующие значения:

– число работающих модулей.

Вообще говоря, для полноты картины в модели нужно учесть, что интенсивность потока ошибок l ¹ const, и уменьшается со временем, так как количество ошибок в программе уменьшается на единицу с интенсивностью m и стремиться к некоторому постоянному уровню. Например,

Вообще, если быть более строгим в рассуждениях, то мы имеем дело фактически с одним объектом, который после каждого исправления становится новым объектом с новым количеством ошибок (не обязательно меньшим) и это говорит о том, что в данной системе нет отсутствия последействия, то есть процесс не пуассоновский, а, следователь:но, и не марковский. Поэтому, вообще говоря, нужно брать процесс Эрланга второй степени и применять метод приведения процесса к марковскому (метод псевдосостояний), описанный в [11]. Этот метод в работе не рассматривается из–за его сравнительной сложности и из–за того, что этим эффектом можно пренебречь при большом количестве состояний клиентов и/или большом количестве программ–клиентов, а также учитывая то предположение, что новый объект (новая программа) появляется мгновенно после исправления в ней ошибки.

2.3.4 Модель для случая l ¹ const

Итак, процесс работы клиент–серверного ПО зависит от количества исправленных в ней до этого ошибок. То есть от интенсивности потоков событий, переводящих элемент из состояния в состояние, зависят от того сколько элементов было в системе в данном состоянии. Чем большее количество раз ПО было на доработке (исправление ошибок в нем), тем меньше поток ошибок в будущем. Считаем, что ошибки исправляются корректно, то есть при исправлении не вносятся новые ошибки или вносятся, но гораздо реже, чем исправляются. При этом уменьшается интенсивность потока событий, переводящий каждый элемент (модуль или поток или процесс) ПО из состояния «исправен» (работоспособен) в состояние «неисправен».

Предложенный подход позволяет построить достоверную модель численности состояний ПО, исходя из этого предположения. Итак, пусть система S состоит из большого числа N однородных элементов (модулей или потоков одного модуля), каждый из которых может быть в одном из двух состояний:

x1 – работоспособен (работает);

x2 – не рабочий (обнаружена ошибка и исправляется).

На каждый модуль действует поток ошибок с интенсивностью l, которая зависит от количества исправленных ранее в модуле ошибок. Каждый неисправный элемент исправляется в среднем со скоростью m в единицу времени. В начальный момент (t = 0) все элементы (модули) исправны. Все потоки событий – пуассоновские (может быть с переменной интенсивностью). Напишем уравнения динамики средних для средних численностей состояний. Граф состояний одного модуля имеет вид, представленный на рисунке:

Рисунок 14 – Граф состояния модуля

Здесь l` – интенсивность потока ошибок в зависимости от предыдущих исправлений.

Найдем l` от числа предыдущих исправлений этого модуля. Выскажем предположение, что l` уменьшается с количеством исправленных ошибок до некоторого постоянного значения нечувствительности к исправлениям (например, когда количество исправленных ошибок становится равным количеству вносимых ошибок, или количество ошибок в модуле становится столь малым, что они начинают срабатывать с постоянной интенсивностью) по экспоненциальному закону и стремиться к некоторому минимуму тем быстрее, чем быстрее исправляются ошибки m – как показано на рис.15.

Рисунок 15 – Интенсивность потока ошибок

Для упрощения предположим, что l` обратно пропорционально m(m) числу модернизаций модуля, то есть убывает по гиперболическому закону:

.(14)

На основе графа (см. рис. 14) дифференциальные состояния динамики средних запишутся в виде:

(15)

где m1(t), m2(t) – средние численности состояний x1 и x2.

Из этих двух уравнений можно выбрать одно, например, второе, а первое отбросить. Во второе уравнение подставим выражение для m1(t) из условия:

m1(t) + m2(t) = N.


Тогда получим вместо системы уравнений (15) одно дифференциальное уравнение:

Из предположения (14) имеем:

(16)

При этом количество модернизаций m зависит от интенсивности исправления модуля m и количества программистов (или групп программистов) P работающих над исправлением модулей. Предположим, что:

m(m) = m×P×t(17)

Окончательно получим уравнение для m2(t):

(18)

Решать это уравнение нужно при начальном условии m2(t=0) = 0 численными методами.


2.4 Разработка обобщенной модели надежности ПО типа клиент–сервер

Рассмотрим теперь уравнения смешанного типа. До сих пор мы описывали процессы, протекающие в ПО, либо с помощью уравнений для вероятностей состояний, либо с помощью уравнений динамики средних, где неизвестными функциями являются средние численности состояний. Уравнения первого типа применяются тогда, когда ПО сравнительно простое и его состояния сравнительно немногочисленны. Уравнения второго типа специально предназначены для описания процессов, происходящих в ПО, состоящего из многочисленных модулей. Для таких систем нам удалось найти не вероятности состояний, а средние численности состояний.