Смекни!
smekni.com

Распределение ресурсов по трем отраслям (стр. 1 из 2)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"САРОВСКИЙ ГОСУДАРСТВЕННЫЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ"

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

На тему:

СТУДЕНТ (группа ИС-45Д)

РУКОВОДИТЕЛЬБеляев С.П.

г. Саров 2008 г

Оглавление

ВВЕДЕНИЕ. 3

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. 4

Исходные параметры.. 5

Искомые параметры.. 6

МЕТОД РЕШЕНИЯ.. 6

ОБОСНОВАНИЕ ВЫБОРА ПРОГРАММНЫХ СРЕДСТВ.. 9

ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ.. 10

СПИСОК ЛИТЕРАТУРЫ.. 11

ВВЕДЕНИЕ

Основная часть данной работы направлена на практическое освоение метода динамического программирования на примере решения хорошо изученных задач, а именно: простейшей задачи оптимального распределения ресурсов и задачи управления запасами продукта при случайном спросе на него.

Кроме теоретических основ и практических рекомендаций, необходимых для численного решения указанных задач, связанных с простым классом одномерных процессов распределения [1], дополнительно рассматриваются задачи оптимального распределения при наличии двух типов ресурсов и двух типов ограничений, в рамках которых возможны не только постановка и решение большого числа прикладных задач [1, 5], но также выявление существенных и качественных особенностей, связанных с применением метода динамического программирования, при переходе к задачам с многомерными процессами распределения.

Цель работы: знакомство с постановкой задачи оптимального распределения ограниченного ресурса и методом множителей Лагранжа в задачах условной оптимизации, изучение принципа оптимальности Беллмана и вычислительной схемы решения задачи оптимального распределения ограниченного ресурса методом динамического программирования, разработка программы для численного решения задачи и проведение расчетов.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Постановка простейшей задачи оптимального распределения

ограниченного ресурса

В различных производственно-экономических системах значительное число решаемых задач тесно связано с эффективным использованием и распределением ограниченных ресурсов, необходимых для нормального функционирования таких систем. Переходя к формулировке одной из простейшей задач такого класса, вначале опишем кратко процессы, обусловливающие возникновение этого типа задач.

Пусть некоторая производственно-экономическая система располагает заданным количеством какого-либо экономического ресурса, под которым подразумеваются материальные, трудовые, финансовые либо иные ресурсы, необходимые для функционирования системы. В случае нескольких потребителей указанного ресурса или далее соответствующих технологических процессов возникает следующая задача: разделить имеющееся количество ресурса между ними так, чтобы максимизировать их суммарную эффективность или получаемый доход от этих процессов [1].

Для математической постановки этой задачи требуется принять следующие основные предположения [1]:

1) эффективности каждого из рассматриваемых технологических процессов, например в виде соответствующих доходов, могут быть измерены общей единицей: либо в виде валового выпуска однородного продукта, либо в стоимостной форме;

2) эффективность каждого технологического процесса не зависит от

того, какие количества ресурсов были выделены для других технологических процессов;

3) общая эффективность или, что то же самое, суммарный доход от всех технологических процессов – аддитивная величина, то есть величина, равная сумме доходов, получаемых от каждого процесса в отдельности.

Тогда математическая постановка задачи оптимального распределения ограниченного ресурса формулируется следующим образом [1].

Предположим, что имеется N технологических процессов, занумерованных в определенном порядке числами 1, 2, ... , N , и каждому такому процессу поставлена в соответствие некоторая функция, оценивающая его эффективность, а именно: величина дохода в зависимости от количества выделенного ресурса для этого процесса. Пусть xi – количество выделенного ресурса i-му процессу (i = 1, 2, ... , N ), а величина дохода, получаемого в этом процессе, задается функцией gi = gi (xi ) . Отметим, что в качестве таких функций можно выбирать, например, производственные функции или функции полезности неоклассического типа [2, 3].

С учетом второго и третьего предположения – о независимости процессов и аддитивности их общей эффективности – для суммарного дохода от распределения ограниченного ресурса между указанными N технологическими процессами получим следующее выражение:

В силу ограниченности распределяемого ресурса, располагаемое количество которого здесь обозначим через z, для переменных задачи xi , i = 1, 2, ... , N , имеет место следующее ограничение:

которое вместе с условиям неотрицательности для этих же переменных

задает допустимую область определения для функции (1.1). Таким образом, задача оптимального распределения ограниченного ресурса заключается в том, чтобы определить значения переменных xi , i = 1, 2, ... , N , которые доставляют максимальное значение функции R(x1, x2 , ... , xN ) (1.1), удовлетворяя при этом ограничениям (1.2), (1.3). Задача (1.1) - (1.3) относится к классу задач условной оптимизации. Ограничения, задающие в этих задачах допустимые множества, обычно в математической экономике разделяют на две группы, а именно: ограничения вида (1.2) относят к функциональным ограничениям, а ограничения вида (1.3) – к прямым ограничениям [2]. Значения xi , i = 1, 2, ... , N , для которых доставляется максимальное значение функции (1.1) с учетом (1.2), (1.3), называют решением задачи, а соответствующие значения функции (1.1), то есть max R(x1, x2 , ... , xN ) , – значением задачи. Если ограничения задачи, заданные в виде нестрогих неравенств, для ее решения обращаются в равенства, то такие ограничения тогда называют эффективными; иначе эти ограничения являются неэффективными, и в связи с этим их можно в процессе решения задачи отбрасывать.

Исходные параметры

1. z – располагаемое количество ресурса,

2. n – мера квантования z

3.

4.

5.

Искомые параметры

1. fN(z) = fN(nΔ ) - искомый максимум функции R

2. xN(z) – искомое оптимальное количество ресурса

МЕТОД РЕШЕНИЯ

Переходя к изложению вычислительной схемы решения задачи с применением основного функционального уравнения (1.15), предположим (а это существенно для дальнейшего изложения), что переменные задачи N i xi , ... 2, 1, , = , а также количества распределяемого ресурса

как в (1.10), так и в (1.15) могут принимать только дискретные значения с некоторым выбранным шагом Δ >0. То есть имеет место:

где nΔ = z . Соответственно, функции (1.10) в рекуррентном соотношении (1.15) будут вычисляться только для указанных в (1.16) значений

или, что то же самое, только для таких точек:

Указанный подход позволяет избежать процедуры интерполирования при вычислении значений

, исходя из вычисленных значений fm−1( y) в точках y = 0, Δ , 2Δ , ... , z . Действительно, для вычисления под знаком максимума в (1.15) значения
− интерполирования не требуется, так как здесь с учетом (1.16) и (1.17) имеет место:
.

Согласно (1.15), для вычисления

вначале следует найти значения
для всех значений
из (1.16) с помощью соотношений (1.12)

или (1.13), которые доставляют множество всех требуемых значений

. Затем для всех
(1.16) с учетом (1.15) вычисляются значения:

где

.Процедура максимизации (1.18) заключается в том, чтобы вначале для каждого z ~ последовательно вычислить значения:
а затем выбрать из них максимальное, то есть искомое значение
; при этом определяется и соответствующее ему оптимальное значение
.