Требуется найти такое неотрицательное решение системы
x1 ≥0, x2 ≥0, … … , xn ≥0 (1.3)
при котором функция f принимает наименьшее значение.
Уравнения (1.1) называют системой ограничений данной задачи; функцию f — целевой функцией (или линейной формой).
2.2.Методы решения задач линейного программирования
2.2.1. Симплекс – метод
Симплекс метод - метод линейного программирования, который реализует рациональный перебор базисных допустимых решений, в виде конечного итеративного процесса, необходимо улучшающего значение целевой функции на каждом шаге.
Применение симплекс-метода для задачи линейного программирования предполагает предварительное приведение ее формальной постановки к канонической форме с n неотрицательными переменными: (X1, ..., Xn), где требуется минимизация линейной целевой функции при m линейных ограничениях типа равенств. Среди переменных задачи выбирается начальный базис из m переменных, для определенности (X1, ..., Xm), которые должны иметь неотрицательные значения, когда остальные (n-m) свободные переменные равны 0. Целевая функция и ограничения равенства преобразуются к диагональной форме относительно базисных переменных, переменных, где каждая базисная переменная входит только в одно уравнение с коэффициентом 1:
X0 + A0,m+1*Xm+1 + ... + A0,n*Xn = A0,0 X1 + A1,m+1*Xm+1 + ... + A1,n*Xn = A1,0. . . . . . . . . . . . . . . . . . Xi + Ai,m+1*Xm+1 + ... + Ai,n*Xn = Ai,0. . . . . . . . . . . . . . . . . . Xm + Am,m+1*Xm+1 + ... + Am,n*Xn = Am,0Данная формальная модель задачи линейного программирования обычно задается в форме так называемой симплекс-таблицы, удобной для выполнения операций симплекс-метода:
Симплекс-таблица
1 | X1 | X2 | ... | Xm | Xm+1 | ... | Xn | |
X0 | A0,0 | 0 | 0 | ... | 0 | A0,m+1 | ... | A0,n |
X1 | A1,0 | 1 | 0 | ... | 0 | A1,m+1 | ... | A1,n |
X2 | A2,0 | 0 | 1 | ... | 0 | A2,m+1 | ... | A2,n |
... | ... | ... | ... | ... | ... | ... | ... | ... |
Xm | Am,0 | 0 | 0 | ... | 1 | Am,m+1 | ... | Am,n |
Верхняя строка симплекс-таблицы представляет целевую функцию задачи. Каждая строка симплекс-таблицы, кроме первой, соответствует определенному ограничению-равенству задачи. Свободные члены ограничений составляют крайний левый столбец таблицы. Слева от таблицы записаны текущие базисные переменные (X1, ..., Xm). Сверху от таблицы приведен набор всех переменных задачи, где Xm+1, ..., Xn - свободные переменные задачи.
Преобразования таблицы надо производить до тех пор, пока не будет получена симплекс-таблица, которая одновременно является прямо и двойственно допустимой.
Данный метод получил широкое распространение и большую популярность по сравнению с другими подходами, так как крайне редко на практике встречаются задачи трудные для симплекс-метода.
2.2.2. Геометрический метод
Применяется дя задач с двумя переменными. Метод решения состоит в следующем:
На плоскости Ох1х2 строятся прямые, которые задают соответствующие ограничения:a11 x1 + a11 x2 + …… + a11 xn = b1 ,
a21 x1 + a22 x2 + …… + a2n xn = b2 ,
…………………………………………
am1 x1 + am2 x2 + …… + amn xn = bm .
Находим множество всех точек х1,х2, удовлетворяющим всем неравенствам. Такое множество называется областью допустимых решений. Строим вектор
и перемещаем линию уровня, который задается уравнением: с1х1+с2х2 = const в направлении вектора до последней точки пересечения с ОДР. Эта точка и дает решение задачи Lmax = значению L в этой точки2.3. Двойственная задача.
Общая схема построения двойственной задачи.
Если задана общая задача ЛП:
где D определяется системой уравнений и неравенств:
то двойственной по отношению к ней называется общая задача ЛП:
где D* определяется системой уравнений и неравенств:
Как следует из приведенной схемы при переходе от прямой задачи ЛП к двойственной:
1. Тип оптимума меняется на противоположный, т. е. максимум на минимум, и наоборот.
2. Вектор коэффициентов целевой функции c и столбец ограничений b меняются местами.
3. Матрица ограничений задачи А транспонируется.
4. Множество индексов переменных, на которые наложено условие неотрицательности в прямой задаче определяют номера ограничений, имеющих форму неравенств в двойственной задаче .
5. Множество номеров ограничений, имеющих форму неравенств в прямой задаче определяют множество индексов переменных, на которые накладывается условие неотрицательности, в двойственной задаче .
Из приведенного определения вытекает важное свойство — симметричность отношения двойственности, т. е. задача, двойственная по отношению к двойственной, совпадает с прямой (исходной) задачей.
((D*)*, (f*)*)≡(D, f),
Основные теоремы:
Теорема 1. Если одна из двойственных задач имеет конечный оптимум, то другая также имеет конечный оптимум, причем экстремальные значения целевых функций совпадают
Теорема 2 ( о дополняющей нежесткости). Для того чтобы план х* и у* являлись оптимальными решениями соответственно задач линейного программирования и двойственной к ним необходимо и достаточно, чтобы выполнялись следующие соотношения:
Теорема 3 (об оценках). Значение переменных
в оптимальном решении двойственной задачи представляет собой оценки влияния свободных членов bi в системе ограничения прямой задачи на величину целевой функции f(x*)Одна из наиболее распространенных задач математического программирования — транспортная задача. В общем виде ее можно представить так: требуется найти такой план доставки грузов от поставщиков к потребителям, чтобы стоимость перевозки (или суммарная дальность, или объем транспортной работы в тонно-километрах) была наименьшей. Следовательно, дело сводится к наиболее рациональному прикреплению производителей к потребителям продукции (и наоборот). В простейшем виде, когда распределяется один вид продукта и потребителям безразлично, от кого из поставщиков его получать, задача формулируется следующим образом.
Имеется ряд пунктов производства
с объемами производства в единицу времени (месяц, квартал), равными соответственно и пункты потребления потребляющие за тот же промежуток времени соответственно продукции. В случае, если решается закрытая (сбалансированная) задача, сумма объемов производства на всех пунктах-поставщиках равна сумме объемов потребления на всех пунктах-получателях:Кроме того, известны затраты по перевозке единицы продукта от каждого поставщика к каждому получателю — эти величины обозначаются
В качестве неизвестных величин выступают объемы продукта, перевозимого из каждого пункта производства в каждый пункт потребления, соответственно обозначаемые .Тогда наиболее рациональным прикреплением поставщиков к потребителям будет такое, при котором суммарные затраты на транспортировку будут наименьшими:
При этом каждый потребитель получает нужное количество продукта:
и каждый поставщик отгружает весь произведенный им продукт:
Как и во всех подобных случаях, здесь также оговаривается неотрицательность переменных: поставка от какого-то пункта производства тому или иному пункту потребления может быть равна нулю, но отрицательной, т. е. следовать в обратном направлении, быть не может.
Рассмотрим таблицу.
Строки транспортной таблицы соответствуют пунктам производства (в последней клетке каждой строки указан объем запаса продукта ai), а столбцы — пунктам потребления (последняя клетка каждого столбца содержит значение потребности bj). Все клетки таблицы (кроме тех, которые расположены в нижней строке и правом столбце) содержат информацию о перевозке из i-го пункта в j-й: в левом верхнем углу находится цена перевозки единицы продукта, а в правом нижнем — значение объема перевозимого груза для данных пунктов. Клетки, которые содержат нулевые перевозки (xi,j=0), называют свободными, а ненулевые — занятыми (xi,j>0).