Смекни!
smekni.com

Свойства информации. Единицы измерения количества информации (стр. 3 из 24)

• шина данных, по которой, собственно, и будет пе­редана необходимая информация;

• шина управления, регулирующая этот процесс.

Рассмотрим в качестве примера, как процессор чи­тает содержимое ячейки памяти. Убедившись, что шина свободна, процессор помещает на шину адреса требу­емый адрес и устанавливает необходимую служебную информацию (операция — чтение, устройство — ОЗУ и т.п.) на шину управления. ОЗУ, "увидев" на шине обращенный к нему запрос на чтение информации, из­влекает содержимое необходимой ячейки и помещает его на шину данных (разумеется, реальный процесс зна­чительно более детальный).

Подчеркнем, что на практике функциональная схе­ма может быть значительно сложнее: компьютер мо­жет содержать несколько процессоров, прямые инфор­мационные каналы между отдельными устройствами, несколько взаимодействующих шин и т.д.

Магистральная структура позволяет легко подсоеди-. нять к компьютеру именно те внешние устройства, которые нужны для данного пользователя.

Характеристики персональных компьютеров факти­чески представляют собой совокупность характеристик отдельных устройств, его составляющих (хотя, строго говоря, они должны разумно соответствовать друг дру­гу) . Наиболее важными из них являются следующие.

Главная характеристика процессора — тактовая час­тота. Такты — это элементарные составляющие машин­ных команд. Для организации их последовательного вы­полнения в компьютере имеется специальный генератор импульсов. Очевидно, что чем чаще следуют импульсы, тем быстрее будет выполнена операция, состоящая из фиксированного числа тактов. Тактовая частота в совре­менных компьютерах измеряется в гигагерцах, что соот­ветствует миллиардам импульсов в секунду.

С теоретической точки зрения важной характерис­тикой процессора является его разрядность. На прак­тике же все выпускаемые в данный момент процессо­ры имеют одинаковую (причем достаточную для по­давляющего большинства практических целей) разрядность. С другой стороны, при выборе компьютера важ­ное значение имеет набор окружающих процессор микросхем (так называемый "чипсет" ), но детали этого вопроса выходят далеко за рамки билета.

Объемы ОЗУ и видеопамяти также являются важ­ными характеристиками компьютера. Единицей их из­мерения в настоящий момент является мегабайт, хотя в некоторых наиболее дорогих моделях оперативная память уже превышает 1 гигабайт. Еще одной, "более технической", характеристикой является время досту­па к памяти — время выполнения операций записи или считывания данных, которое зависит от принципа действия и технологии изготовления запоминающих элементов.

По технологии изготовления различают статические и динамические микросхемы памяти. Первая является более быстродействующей, но, соответственно, и более дорогой. В качестве компромиссного решения в совре­менных компьютерах применяется сочетание большого основного объема динамического ОЗУ с промежуточ­ной (между ОЗУ и процессором) статической кэш-па­мятью. Ее объем также оказывает существенное влия­ние на производительность современного ПК.

Важной характеристикой компьютера является его оснащенность периферийными устройствами. Читате­ли легко смогут привести здесь достаточное количество примеров. Хочется только подчеркнуть, что существенна 'также возможность подключения к машине дополни7 тельных внешних устройств. Например, современно­му компьютеру совершенно необходимо иметь разъе­мы USB1, через которые к нему можно подключать множество устройств: от принтера и мыши до флэш-диска и цифрового фотоаппарата.

Желательно изложить

При обращении к внешним устройствам использу­ются специальные регистры, которые принято назы­вать портами.

Обмен по шине между устройствами при опреде­ленных условиях и при наличии вспомогательного кон­троллера может происходить без непосредственного участия процессора. В частности, возможен такой об­мен между периферийным устройством и ОЗУ (пря­мой доступ к памяти).

Оба вида запоминающих микросхем — статические и динамические — успешно конкурируют между со­бой. С одной стороны, статическая память значитель­но проще в эксплуатации и приближается по быстро­действию к процессорным микросхемам. С другой сто­роны, она имеет меньший информационный объем и большую стоимость, сильнее нагревается при работе. На практике в данный момент выбор микросхем для построения ОЗУ всегда решается в пользу динамиче­ской памяти. И все же быстродействующая статиче-

1 USB (UniversalSerialBus) — универсальная последователь­ная шина.

екая память в современном компьютере обязательно есть: она называется кэш-памятью.

Кэш невидим для пользователя, так как процессор использует его исключительно самостоятельно. Кроме сохранения данных и команд, считываемых из ОЗУ, в специальном каталоге кэш запоминаются также адре­са, откуда информация была извлечена. Если информа­ция потребуется повторно, уже не надо будет терять время на обращение к ОЗУ — ее можно получить из кэш-памяти значительно быстрее. Кэш-память явля­ется очень эффективным средством повышения произ­водительности компьютера.

Примечания для учителей

Если в аналогичном билете 9-го класса упор делался на перечисление основных устройств компьютера, их примеров и функций, то при ответе на выпускном экзамене данный материал служит лишь введением. Основное содержание первой части вопроса служит описанием процесса взаимодействия узлов компьюте­ра через общую информационную шину.

Во второй половине вопроса следует не просто тре­бовать от учеников перечисления характеристик ком­пьютера и их значений, но и разъяснения их сущности и особенно знания тех свойств компьютерной систе­мы, на которых данные характеристики сказываются. Например, какое влияние оказывает недостаточный объем ОЗУ и почему, для каких приложений требует­ся большое количество видеопамяти, а какие вполне работоспособны при минимальном и т.п.

Примечание для учеников

Вопрос довольно объемный, но с практической точ­ки зрения понятный. Поэтому ограничимся единствен­ной рекомендацией: изобразите все упомянутые в рас­сказе блоки компьютера в виде схематического рисун­ка, что значительно 'облегчит объяснения.

Ссылки

Большое количество дополнительного материала по данному билету можно найти в книге Е.А. Еремина "Популярные лекции об устройстве компьютера" (СПб.: BHV-Петербург, 2003).

"Информатика" № 9, 2002, с. И —13.

2. Технология объектно-ориентированного программирования (объекты, их свойства и методы, классы объектов)

Базовые понятия

Парадигма программирования, объектно-ориенти­рованное программирование, объект, метод, инкапсу­ляция, наследование, полиморфизм.

Обязательно изложить

Основополагающей идеей одного из популярных в настоящее время подходов к программированию — объектно-ориентированного — является объединение

БИЛЕТ № 6

1. Устройства памяти компьютера. Внешние носи­тели информации (гибкие диски, жесткие диски, диски CD-ROM/R/RW, DVD и др.). Принципы записи и считывания информации.

2. Визуальное объектно-ориентированное програм­мирование. Графический интерфейс: форма и управ­ляющие элементы.

3. Векторная графика. Практическое задание. Соз­дание, преобразование, сохранение, распечатка рисунка в среде векторного графического редактора.

1. Устройства памяти компьютера. Внешние носители информации (гибкие диски, жесткие диски, диски CD-ROM/R/RW, DVD и др.). Принципы записи и считывания информации

Базовые понятия

Внешняя память, накопитель, носитель информации, магнитный носитель, оптический носитель.

Обязательно изложить

Внешняя (долговременная) память — это место дли­тельного хранения данных (программ, результатов рас­четов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьюте­ры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — но­сителя.

Основные виды накопителей:

• накопители на гибких магнитных дисках (НГМД);

• накопители на жестких магнитных дисках (НЖМД);

• накопители на магнитной ленте (НМЛ);

• накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

• гибкие магнитные диски (FloppyDisk)',

• жесткие магнитные диски (HardDisk);

• кассеты для стримеров и других НМЛ;

• диски CD-ROM, CD-R, CD-RW, DVD-R, DVD-RW. Основные характеристики накопителей и носителей:

• информационная емкость;

• скорость обмена информацией;

• надежность хранения информации;

• стоимость.

Принцип работы магнитных запоминающих уст­ройств основан на способах хранения информации с ис­пользованием магнитных свойств материалов. Как прави­ло, магнитные запоминающие устройства состоят из соб­ственно устройств чтения/записи информации и маг­нитного носителя, на который непосредственно осуще­ствляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими харак­теристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая тех­нология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носите­ли, как правило, намагничиваются вдоль концентрических полей — дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись произво­дится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечника­ми, на обмотки которых подается переменное напряже­ние. Изменение величины напряжения вызывает измене­ние направления линий магнитной индукции магнитного поля и при намагничивании носителя означает смену зна­чения бита информации с 1 на 0 или с 0 на 1.