Смекни!
smekni.com

Сетевые возможности Windows 9X по версиям. Основные сетевые программы и их назначение (стр. 4 из 5)

Функционирование пузырьково-струйного сопла-распылителя: сначала сильный импульс напряжения длительностью 3–7 мкс подается на крохотный нагревательный элемент, который мгновенно накаляется до 500 гр. Цельсия. На его поверхности температура превышает 300 гр. Цельсия. Мощность нагрева поверхности настолько велика, что при увеличении длительности импульса напряжения всего лишь на несколько микросекунд нагревательный элемент моментально бы разрушился. Сразу же в тонкой пленке над нагревательным элементом начинают кипеть чернила, и через 15 мкс образуется закрытый пузырек пара высокого давления (до 10 бар). Он выталкивает каплю чернил из сопла-распылителя, при чем скорость полета капли достигает 10 м/с и более. Через 40 мкс пузырек, соединившись с атмосферой, опять опадает, однако пройдет еще 200 мкс, пока новые чернила под действием капиллярных сил не будут засосаны из резервуара.

С самого начала пузырьково-струйные печатающие головки делились на две группы. Компания Canon, изобретатель системы, предпочла вариант Edlgeshooter. Почти одновременно фирма Hewlett-Packard разработала головку типа Sidechooter, которую теперь изготавливает и компания Olivetti. Головка Edgeshooter, как становится ясно уже из названия, разбрызгивает чернильные капли «за угол», т.е. перпендикулярно к направлению образования пузырьков. В головке Sideshooter, где пластина с соплами-распылителями находится поверх нагревательных элементов и каналов подачи чернил, пузырьки и капли движутся в одном направлении. Поскольку края сопел-распылителей в головках типа Sideshooter сделаны из однородного, а не из различных материалов, как в Edgeshooter, процесс изготовления распылителей с отверстиями определенного размера для Sideshooter значительно проще, чем для головок Edgeshooter. Кроме того, приходится учитывать неодинаковое смачивание разнородной поверхности головки Edgeshooter.

Требования к качеству чернил для любой системы струйной термопечати очень высоки, значительно выше, чем пьезосистемах. Принцип функционирования и высокие температуры обусловливают применение только смешанных растворимых красителей на водяной основе.

Вполне вероятно, что струйные принтеры завоюют массовый рынок, вытесняя таким образом матричные принтеры. Если же разработчикам удастся повысить разрешение и скорость печати струйных принтеров, то изготовителям лазерных принтеров придется всерьез побороться за место на рынке. До сих пор никакой другой метод печати не порождал такого разнообразия вариантов, как струйная печать, при чем не подлежит сомнению, что возможность этой технологии еще долго не будет исчерпана.

Лазерные принтеры: лазерные принтеры, как и копировальные аппараты, используют принцип сухой ксерографии, в основе которого лежит напыление порошка на материал с последующим запеканием.

Устройство обычного лазерного принтера: до того, как перейти непосредственно к принтерам, рассмотрим вначале копировальные аппараты, поскольку на их основе строения были сделаны лазерные принтеры. Функционально аппарат состоит из следующих частей (если не рассматривать сканирующую часть):

1. Фоторецептор (барабан)

2. Магнитный вал

3. Ракельный нож

4. Коротрон заряда

5. Вал переноса (коротрон переноса)

6. Коротрон отсечения

7. Бункер с тонером

8. Бункер отработки

9. Печка (фьюзер)

Фоторецептор представляет собой специальный материал (обычно это селен), нанесенный на металлическую основу. Обычно он выполняется в виде вала, поэтому иногда его называют барабан (drum unit). Фоторецептор заряжается коротроном заряда, который представляет собой металлическую (обычно золотую или платиновую проволоку) или же резиновый вал с металлической основой. Причем резина токопроводящая. На старых аппаратах применялся проволочный коротрон. В настоящее время происходит переход к другой технологии. Дело в том, что проволочный коротрон сильно озонирует воздух из-за высокого напряжения, подаваемого на него. После зарядки на фоторецептор подается изображение, которое в копировальных аппаратах освещается мощным источником света и проецируется через систему зеркал. Обычно для освещения оригинала используется каретка с лампой как в сканерах. Для увеличения и уменьшения изображения служит объектив с изменяемым фокусным расстоянием. Скорость барабана и каретки должна быть согласована. Те места на фоторецепторе, на которые падает свет, меняют свой потенциал или вообще теряют заряд (в зависимости от типа копировального аппарата). Таким образом, на фоторецепторе остается рисунок оригинала в виде заряженных участков. Затем фоторецептор входит в контакт с магнитным валом, который покрыт смесью тонера и носителя. Тонер представляет собой пыль, состоящую из мельчайших частиц определенного цвета. Для достижения более высокого качества печати фирмы-производители стремятся к созданию более мелких частиц тонера.

Носитель (developer) представляет собой железные частицы, на которых осаждается тонер. Таким образом, на магнитном валу находятся железные частицы, покрытые тонером. В некоторых аппаратах носитель отделен от тонера и заправляется отдельно, в других тонер представляет собой порошок, уже смешанный с носителем. Тонер находится в специальном бункере. Внутри бункера устанавливается мешалка, которая предотвращает опрессовывание тонера. Тонер переходит на фоторецептор за счет противоположного заряда на фоторецепторе. Весь этот процесс носит название проявки. Во время этого процесса бумага подается на регистрацию, т.е. она выбирается из лотка и устанавливается таким образом, чтобы начинать печать. Когда датчик регистрации бумаги сообщает, что бумага дошла до фото барабана, происходит перенос изображения с фото барабана на бумагу. После того, как тонер перенесен, подается бумага. Под бумагой проходит коротрон переноса (вал переноса), который имеет потенциал сильнее потенциала фоторецептора. Этот вал выполняется из металла, покрытого специальной токопроводящей резиной. Вал за счет более сильного потенциала на нем оттягивает на себя тонер, который осаждается на бумаге. Затем с помощью специального механизма бумага отрывается от рецептора и подается на запекание. В некоторых машинах существует такой механизм, в некоторых нет. Он представляет собой еще один коротрон, который оттягивает бумагу от рецептора.

Запекание представляет собой процесс высокотемпературного нагрева бумаги с одновременным прижимом специальным валиком. Механизм состоит из нагреваемого тефлонового вала, с кварцевой лампой внутри, и резинового прижимного вала. Механизм для запекания носит название печка (fuser). Иногда вместо тефлонового вала устанавливается специальный термоэлемент, покрытый термопленкой. Такие копиры имеют меньший срок прогрева и меньшее энергопотребление, однако и ходит термопленка значительно меньшее количество копий и повредить ее значительно легче при неправильном извлечении бумаги. В некоторых аппаратах предусмотрено смазывание прижимного вала силиконовой смазкой. Эта смазка предотвращает прилипание бумаги к валу. Механизм с кварцевой лампой более дорогой, но и более надежный обычно используется в высокопроизводительных машинах. Механизм с термопленкой используется в принтерах и копирах малого класса. Фоторецептор очищается от остатков тонера с помощью ракельного ножа, который сделан из специального материала и находится в плотном контакте с рецептором. Ракельный нож обычно выполняется в виде полосы из мягкого пластика. В некоторых аппаратах предусмотрена смазка ракельного ножа. Остатки тонера удаляются в бункер отработки. Это наиболее распространенный принцип удаления остатков тонера. В некоторых аппаратах вместо ракельного ножа используется электростатическое удаление остатков тонера. В этих машинах опять же практически весь тонер переносится на бумагу.

Светодиодные принтеры: светодиодная и лазерная технологии цифровой печати используют электрографический процесс для получения финального отпечатка. Фактически, эти устройства одного и того же класса: в обоих случаях источник света, управляемый процессором принтера, формирует на светочувствительном барабане поверхностный заряд, соответствующий требуемому изображению. Далее вращающийся барабан проходит мимо бункера с тонером, притягивает частички тонера к «засвеченным» местам и переносит тонер на бумагу. Затем тонер закрепляется на бумаге термоэлементом (печкой) – voila, мы получаем на выходе готовый отпечаток.

Остановимся на конструкции источника света, засвечивающего барабан. Именно в типе используемого источника света и кроется разница между лазерным и светодиодным принтером: в отличие от лазерного блока, в последнем случае используется линейка, состоящая из тысяч светодиодов.