Сигнал - физический процесс, отображающий сообщение. В технических системах чаще всего используются электрические сигналы. Сигналы, как правило, являются функциями времени.
Сигналы можно классифицировать по различным признакам:
1. Непрерывные (аналоговые) - сигналы, которые описываются непрерывными функциями времени, т.е. принимают непрерывное множество значений на интервале определения. Дискретные - описываются дискретными функциями времени т.е. принимают конечное множество значений на интервале определения.
Детерминированные - сигналы, которые описываются детерминированными функциями времени, т.е. значения которых определены в любой момент времени. Случайные - описываются случайными функциями времени, т.е. значения которых в любой момент времени является случайной величиной. Случайные процессы (СП) можно классифицировать на стационарные, нестационарные, эргодические и неэргодические, а так же, гауссовы, марковские и т.д.
3. Периодические - сигналы, значения которых повторяются через интервал, равный периоду
х (t) = х (t+nT), где n = 1,2,...,¥; T - период.
4. Kаузальные - сигналы, имеющие начало во времени.
5. Финитные - сигналы конечной длительности и равные нулю вне интервала определения.
6. Когерентные - сигналы, совпадающие во всех точках определения.
7. Ортогональные - сигналы противоположные когерентным.
1. Длительность сигнала (время передачи) Тс - интервал времени, в течении которого существует сигнал.
2. Ширина спектраFc - диапазон частот, в пределах которых сосредоточена основная мощность сигнала.
3. База сигнала - произведение ширины спектра сигнала на его длительность.
4. Динамический диапазон Dc - логарифм отношения максимальной мощности сигнала - Pmax к минимальной - Pmin (минимально-различи-мая на уровне помех):
Dc = log (Pmax/Pmin).
В выражениях, где может быть использованы логарифмы с любым основанием, основание логарифма не указывается.
Как правило, основание логарифма определяет единицу измерения (например: десятичный - [Бел], натуральный - [Непер]).
5. Объем сигнала определяется соотношениемVc = TcFcDc.
6. Энергетические характеристики: мгновенная мощность - P (t); средняя мощность - Pср и энергия - E. Эти характеристики определяются соотношениями:
P (t) = x2 (t); ; (1)
где T = tmax-tmin.
Детерминированное, т.е. заранее известное сообщение, не содержит информации, т.к получателю заранее известно, каким будет переда-ваемый сигнал. Поэтому сигналы носят статистический характер [11].
Случайный (стохастический, вероятностный) процесс - процесс, который описывается случайными функциями времени.
Случайный процесс Х (t) может быть представлен ансамблем неслучайных функций времени xi (t), называемых реализациями или выборками (см. рис.1).
Рис.1. Реализации случайного процесса X (t)
Полной статистической характеристикой случайного процесса является n - мерная функция распределения: Fn (x1, x2,..., xn; t1, t2,..., tn), или плотность вероятности fn (x1, x2,..., xn; t1, t2,..., tn).
Использование многомерных законов связанно с определенными трудностями,
поэтому часто ограничиваются использованием одномерных законов f1 (x, t), характеризующих статистические характеристики случайного процесса в отдельные моменты времени, называемые сечениями случайного процесса или двумерных f2 (x1, x2; t1, t2), характеризующих не только статистические характеристики отдельных сечений, но и их статистическую взаимосвязь.Законы распределения являются исчерпывающими характеристиками случайного процесса, но случайные процессы могут быть достаточно полно охарактеризованы и с помощью, так называемых, числовых характеристик (начальных, центральных и смешанных моментов). При этом наиболее часто используются следующие характеристики: математическое ожидание (начальный момент первого порядка)
; (2)средний квадрат (начальный момент второго порядка)
; (3)дисперсия (центральный момент второго порядка)
; (4)корреляционная функция, которая равна корреляционному моменту соответствующих сечений случайного процесса
. (5)При этом справедливо следующее соотношение:
(6)Стационарные процессы - процессы, в которых числовые характеристики не зависят от времени.
Эргодические процессы - процесс, в которых результаты усреднения и по множеству совпадают.
Гауссовы процессы - процессы с нормальным законом распределения:
(7)Этот закон играет исключительно важную роль в теории передачи сигналов, т.к большинство помех являются нормальными.
В соответствии с центральной предельной теоремой большинство случайных процессов являются гауссовыми.
Марковский процесс - случайный процесс, у которых вероятность каждого последующего значения определяется только одним предыдущим значением.
Сигналы могут быть представлены во временной, операторной или частотной области, связь между которыми определяется с помощью преобразований Фурье и Лапласа (см. рис.2).
Преобразование Лапласа:
L:
L-1: (8)Преобразования Фурье:
F:
F-1: (9)L:
L-1:
F-1 : p=jw
F: jw=p
Рис.2 Области представления сигналов
При этом могут быть использованы различные формы представления сигналов с виде функций, векторов, матриц, геометрическое и т.д.
При описании случайных процессов во временной области используется, так называемая, корреляционная теория случайных процессов, а при описании в частотной области - спектральная теория случайных процессов.
С учетом четности функций
и и в соответствии с формулами Эйлера: (10)можно записать выражения для корреляционной функции Rx (t) и энергетического спектра (спектральной плотности) случайного процесса Sx (w), которые связанны преобразованием Фурье или формулами Винера - Хинчина
; (11) . (12)Любые n - чисел можно представить в виде точки (вектора) в n -мерном пространстве, удаленной от начала координат на расстоянии D,
где . (13)
Сигнал длительностью Tс и шириной спектра Fс, в соответствии с теоремой Котельникова определяется N отсчетами, где N = 2Fc Tc.
Этот сигнал может быть представлен точкой в n - мерном пространстве или вектором, соединяющим эту точку с началом координат [5].
Длина этого вектора (норма) равна:
; (14)где xi =x (nDt) - значение сигнала в момент времени t = n. Dt.
Допустим: X - передаваемое сообщение, а Y - принимаемое. При этом они могут быть представлены векторами (рис.3).
X2 ,Y2
x2 X
d
y2 Y
g
X1 , Y1
0 a1 a2 x1 y1
Рис.3. Геометрическое представление сигналов
Определим связи между геометрическим и физическим представлением сигналов. Для угла между векторами X и Y можно записать
cosg = cos (a1-a2) = cosa1 cosa2 + sina1 sina2 =
= (15)