Мал.3.38. Діалогове вікно установки параметрів діодів.
У програмі EWB немає спеціальної моделі варікапа, замість неї можна використовувати модель діода. У перелік параметрів діода входять наступні (див. мал. 3.38, у квадратних дужках приведені позначення параметрів, прийняті в EWB5.0):
Saturation current Is [IS], A — зворотний струм діода (за замовчуванням 1014 А);
Ohmic Resistance rs [RS], Ом — об'ємний опір (від десятків до десятих часток Ом);
Zero-bias junction capacitance Cj [CJO], Ф — бар'єрна ємність р-n-переходу при нульовій напрузі (від одиниць до десятків пф);
Junction potential vj [VJ], У — контактна різниця потенціалів (0,75 В);
Tranzit time х [ТТ], з — час переносу заряду;
Junction grading coefficient m [M] — конструктивний параметр р-n-переходу: див. формулу (3.5), у більшості випадків m = 0,333;
Revers Bias Breakdown Voltage Vbr [BV], У — максимальну зворотну напругу (задається зі знаком мінус, для стабілітронів параметр не нормується).
Для стабілітронів у перелік параметрів включаються:
Zener test current Izt [IZT], A — номінальний струм стабілізації (від одиниць до десятків мА);
Zener test Voltage at Izt Uzt [VZT], У — напругу стабілізації при номінальному струмі стабілізації.
Мал.3.39. Ємнісний дільник з діодом.
Схема ємнісного дільника з використанням діода (мал. 3.39) містить; ланцюг зсуву (ланцюг керування бар'єрною ємністю), що складається з джерела напруги Uc і резистора R, генератор (амплітуда 1 В, частота 1 МГц), мультиметр, еталонний конденсатор З і досліджуваний діод VD типу kl (перейменована модель Ideal для можливості редагування параметрів) з бар'єрною ємністю Ci = 100 пФ при нульовій напрузі на переході. Конденсатори З і Ci утворять ємнісної дільник, вихідне напруга якого визначається вираженням (3.4).
Ci=C0(Ui/U0-1).
За допомогою цього вираження можна визначити ємність.
3.5 Резистори
Резистори є самими масовими виробами електронної техніки. У програмі EWB 3.1 резистори представлені трьома типами — постійним, підстроювальним і набором з восьми резисторів (мал. 3.40).
Мал.3.40. Графічні позначення резисторів.
Зміна опору підстроювального резистора здійснюється по тім же принципі, що і для підстроювального конденсатора (див. мал. 3.41). У наборі резисторів опір встановлюється однаковим для усіх восьми резисторів3.6.
Індуктивні елементи
До індуктивних елементів відносяться котушка постійної індуктивності, що підбудовується котушка індуктивності і трансформатор (див. мал. 3.44, а).
При розрахунку перехідних процесів у програмі використовується схема заміщення котушки індуктивності (мал. 3.44, б), параметри якої визначаються вираженнями [67]:
Rln=2L/h; Iln=hUn/2L+In
при чисельному інтегруванні по методу трапецій;
Rln=L/h; Iln=hUn/L
при використанні методу Гіра.
У приведених формулах h — крок збільшення часу; 1П -струм еквівалентного джерела на певному кроці; Rln, Un і Iln — опір шунтуючого резистора, напруга на індуктивності і струм на певному кроці.
Математична модель трансформатора (мал. 3.44, в) містить керовані джерела струму і напруги, за допомогою яких установлюється коефіцієнт трансформації, а також елементи, параметри яких задаються в діалоговому вікні (див. мал. 3.45) [67]. Відповідно до керівництва користувача [67] висновки 2 і 5 при використанні трансформатора повинні бути заземлені, що в деяких випадках істотно знижує можливості його застосування.
а) б) в)
Мал.3.43. Індуктивні компоненти EWB(а), схеми заміщення індуктивності(б) і трансформатора(в).
Параметри котушок з постійною й індуктивністю, що підбудовується, задаються за допомогою діалогових вікон, аналогічних вікнам для конденсаторів і різі рів. У діалоговому вікні установки параметрів лінійних трансформаторів (їх ще 1 називають повітряними) задаються (див. мал. 3.45): коефіцієнт трансформації п, індуктивність розсіювання Le, індуктивність первинної обмотки Lm, опір первинної Rp і вторинної Rs обмоток. При п>1 трансформатор є понижуючої, при п<1 - підвищувальної.
Мал.3.45. Вікно установки параметрів трансформаторів.
3.6 Напівпровідникові діоди
Комбінація двох напівпровідникових шарів з різним типом провідності (р —діркової і n — електронної) має випрямляючі властивості: вона набагато краще пропускає струм в одному напрямку, чим в іншому. Полярність напруги, що відповідає великим струмам, називається прямій, а меншим — зворотної. Звичайно користуються термінами пряма і зворотна напруга, прямій і зворотний струм. Поверхня, по якій контактують р- і n-шари, називається металургійною границею, а прилягаюча до неї область об'ємних зарядів — електронно-дірковим переходом.
Електронно-діркові переходи класифікують по різкості металургійної границі і співвідношенню питомих опорів шарів.
Східчастими переходами (коефіцієнт плавності переходу m = 0,5, у EWB 5.0 має позначення М) називають переходи з ідеальною границею, по одну сторону якої знаходяться дірки, а по іншу — електрони. Такі переходи найбільш прості для аналізу, тому всі реальні переходи намагаються, якщо це можливо, розглядати як східчасті.
Плавними переходами (ш = 0,333) називають такі, у яких в області металургійної границі концентрація одного типу домішки поступово зменшується, а іншого типу — росте. Сама металургійна границя в цьому випадку відповідає рівності концентрацій домішок. Усі реальні р-n-переходи — плавні, ступінь їхнього наближення до східчастого залежить від градієнта ефективної концентрації в районі металургійної границі.
По співвідношенню концентрацій домішок у р- і n-шарах переходи поділяються на симетричні, несиметричні і однобічні. Симетричні переходи не типові для напівпровідникової техніки. Основне поширення мають несиметричні переходи, у яких концентрації не однакові. У випадку різкої асиметрії, коли концентрації домішок (а виходить, і основних носіїв) розрізняються на один-два порядків і більш, переходи називають однобічними.
Вольт-амперна характеристика р-n-перехода описується вираженням [12]:
I=I0(exp(U/Ut-1) (3.7)
де i — струм через перехід при напрузі U, 1ОБ — зворотний струм, Ut — температурний потенціал, рівний при кімнатній температурі 26 мв.
Якщо до переходу підключити зворотна напруга, то при визначеному його значенні перехід пробивається. Розрізняють три види пробою: тунельний, лавинний і тепловий. Перші два зв'язані зі збільшенням напруженості електричного поля в переході, а третій — зі збільшенням потужності, що розсіюється, і, відповідно, температури.
В основі тунельного пробою лежить тунельний ефект, тобто "просочування" електронів крізь тонкий потенційний бар'єр переходу. В основі лавинного пробою лежить "розмноження" носіїв у сильному електричному полі, що діє в області переходу. Електрон і дірка, прискорені полем на довжині вільного пробігу, можуть розірвати одну з ковалентних зв'язків напівпровідника. У результаті народжується нова пара електрон-дірка і процес повторюється вже за участю нових носіїв. При досить великій напруженості полючи, коли вихідна пара носіїв у середньому породжує більш однієї нової пари, іонізація здобуває лавинний характер, подібно самостійному розрядові в газі. При цьому струм буде обмежуватися тільки зовнішнім опором. Явище пробою знаходить практичне застосування в стабілітронах — приладах, призначених для стабілізації напруги.
В основі теплового пробою лежить саморозігрів переходу при протіканні зворотного струму. З ростом температури зворотні струми різко зростають, відповідно збільшується потужність, що розсіюється в переході; це викликає додатковий ріст температури і т.д. Як правило, тепловий пробій не має самостійного значення: він може початися лише тоді, коли зворотний струм уже придбав досить велику величину в результаті лавинного або тунельного пробою.
Раніше (у розд. 3.4) ми вже говорили про бар'єрну ємність. Її прийнято розділяти на дві складові: бар'єрні ємності, що відбиває перерозподіл зарядів у переході, і дифузійну ємність, що відбиває перерозподіл носіїв у базі. Такий поділ у загальному умовно, але воно зручно на практиці, оскільки співвідношення обох ємностей по-різному при зміні полярності прикладеної напруги. При прямій напрузі головну роль грають надлишкові заряди в базі і, відповідно, дифузійна ємність. При зворотній напрузі надлишкові заряди в базі мала і головна роль грає бар'єрна ємність. Обидві ємності нелінійні: дифузійна ємність залежить від прямого струму, а бар'єрна — від зворотної напруги.
Набір параметрів, що задаються, для діодів у EWB 5.0 помітно більше в порівнянні з EWB 3.1. Діалогове вікно для завдання параметрів діодів у EWB 5.0 складається з двох однакових по зовнішньому вигляді закладок (перша з них показана на Рис. 3.49), за допомогою яких можна додатково (у порівнянні з вікном на Рис. 3.38) задати наступні параметри:
N- коефіцієнт інжекції;
EG - ширина забороненої зони, ев; (для германія — 0,72 эв, для кремнію — 1,1 эв); FC - коефіцієнт нелінійності бар'єрної ємності прямо зміщеного переходу; BV - напруга пробою (позитивна величина, у EWB 3.1 вона прийнята негативної), У; для стабілітронів замість цього параметра використовується параметр VZT — напруга стабілізації;
IBV — початковий струм пробою при напрузі BV (позитивна величина), А; Для стабілітронів замість цього параметра використовується параметр IZT — початковий струм стабілізації;
XTI — температурний коефіцієнт струму насичення; KF — коефіцієнт фліккер-шума;