Существует два способа начального заполнения:
· для каждого сообщения отдельно и независимо.
· заполнение - как функция сообщения, переданного ранее.
Последний способ не пригоден для общего случая, когда имеет место неупорядоченное поступление сообщений или при наличии ошибок. Так как режимы КЭК и ШОС - самосинхронизирующиеся, размножение ошибок ограничивается и этот факт следует принимать во внимание при разработке методов обнаружения изменения сообщений за счет размножения ошибок.
1.6 Ассиметричные криптосистемы
Концепция криптосистемы с открытым ключом
Эффективными системами криптографической защиты данных являются асимметричные криптосистемы, называемые также криптосистемами с открытым ключом. В таких системах для зашифровки данных используется один ключ, а для расшифровки - другой ключ (отсюда и название - асимметричные). Первый ключ является открытым и может быть опубликован для использования всеми пользователями системы, которые зашифровывают данные. Расшифровка данных с помощью открытого ключа невозможно
Для расшифровки данных получатель зашифрованной информации использует второй ключ, который является секретным. Разумеется, ключ расшифровки не может быть определен из ключа зашифровки.
Обобщенная схема асимметричной криптосистемы с открытым ключом показана на рис. 7. В этой криптосистеме применяют два различных ключа:
Раскрытие секретного ключа
Характерные особенности асимметричных криптосистем:
1. Открытый ключ
2. Алгоритмы шифрования и расшифровки. Открытый ключ
Защита информации в асимметричной криптосистеме основана на секретности ключа
· вычисление пары ключей (
· отправитель А, зная открытый ключ
· получатель В, используя секретный ключ
· противник, зная открытый ключ
· противник, зная пару (
1.8 Однонаправленные функции
Концепция асимметричных криптографических систем с открытым ключом основана на применении однонаправленных функций. Пусть
И в то же время для большинства
Функция
1.9 Электронно-цифровая подпись
Проблема аутентификации данных и электронная цифровая подпись
При обмене электронными документами по сети связи существенно снижаются затраты на обработку и хранение документов, убыстряется их поиск.
Целью аутентификации электронных документов является их защита от возможных видов злоумышленных действий, к которым относятся:
· активный перехват - нарушитель, подключившийся к сети, перехватывает документы (файлы) и изменяет их;
· маскарад - абонент С посылает документ абоненту В от имени абонента А;
· ренегатство - абонент А заявляет, что не посылал сообщения абоненту В, хотя на самом деле послал;
· подмена - абонент В изменяет или формирует новый документ и заявляет, что получил его от абонента А;
· повтор - абонент С повторяет ранее переданный документ, который абонент А посылал абоненту В.
Электронная цифровая подпись используется для аутентификации текстов, передаваемых по телекоммуникационным каналам. Функционально она аналогична обычной рукописной подписи и обладает ее основными достоинствами:
· удостоверяет, что подписанный текст исходит от лица, поставившего подпись;
· не дает самому этому лицу возможности отказаться от обязательств, связанных с подписанным текстом;
· гарантирует целостность подписанного текста.
Цифровая подпись представляет собой относительно небольшое количество дополнительной цифровой информации, передаваемой вместе с подписываемым текстом.
Система ЭЦП. включает две процедуры:
1. Процедуру постановки подписи;
2. Процедуру проверки подписи.
В процедуре постановки подписи используется секретный ключ отправителя сообщения, в процедуре проверки подписи - открытый ключ отправителя.
При формировании ЭЦП отправитель прежде всего вычисляет хеш-функцию h(М) подписываемого текста М. Вычисленное значение хеш-функции h(М) представляет собой один короткий блок информации m, характеризующий весь текст М в целом. Затем число m шифруется секретным ключом отправителя. Получаемая при этом пара чисел представляет собой ЭЦП для данного текста М.