Смекни!
smekni.com

Способы представления знаний (стр. 3 из 3)

2.3 Представление знаний в виде правил

Такой способ является наиболее понятным и популярным методом формального представления знаний. Правила обеспечивают формальный способ представления рекомендаций, знаний или стратегий. Они чаще подходят в тех случаях, когда предметные знания возникают из эмпирических ассоциаций, накопленных за годы работы по решению задач в данной области.

В системах, основанных на правилах, предметные знания представляются набором правил, которые проверяются на группе фактов и знаний о текущей ситуации (входной информации). Когда часть правила ЕСЛИ удовлетворяет фактам, то действия, указанные в части ТО, выполняется. Когда это происходит, то говорят, что правило срабатывает. Интерпретатор правил сопоставляет части правил ЕСЛИ с фактами и выполняет то правило, часть ЕСЛИ которого сходится с фактами, т.е. интерпретатор правил работает в цикле «Сопоставить - выполнить», формируя последовательность действий.

Действия правил могут состоять:

в модификации набора фактов в базе знаний, например добавление нового факта, который сам может быть использован для сопоставления с частями ЕСЛИ;

во взаимодействии с внешней средой (например, «Вызвать пожарную команду»).

2.4 Представление знаний с использованием фреймов

Системы, базы знаний иногда насчитывают сотни правил, и для инженера знаний при такой сложности системы, процесс обновления состава правил и контроль связей между ними становится весьма затруднительным, поскольку добавляемые правила могут дублировать имеющиеся знания или вступать с ними в противоречие.

Для выявления подобных фактов можно использовать программные средства, но включение их в работу системы приводит к еще более тяжелым последствиям - потере работоспособности, так как в этом случае инженер знаний теряет представление о том, как взаимодействуют правила.

Так как возрастает количество связей между понятиями, инженеру знаний трудно их контролировать.

Представление знаний, основанных на фреймах, является альтернативным по отношению к системам, основанным на правилах: оно дает возможность хранить иерархию понятий в базе знаний в явной форме.

Фреймом называется структура для описания стереотипной ситуации, состоящая из характеристик этой ситуации и их значений. Характеристики называются слотами, а значения - заполнителями слотов. Слот может содержать не только конкретное значение, но и имя процедуры, позволяющей вычислить его по заданному алгоритму, а также одно или несколько правил, с помощью которых это значение можно найти. В слот может входить не одно, а несколько значений. Иногда слот включает компонент называемый фасетом, который задает диапазон или перечень его возможных значений. Как уже отмечалось, помимо конкретного значения, в слоте могут храниться процедуры и правила, которые вызываются при необходимости вычисления этого значения. Если, например, фрейм, описывающий человека, включает слоты «Дата рождения» и «Возраст», и в первом из них находится некоторое значение, то во втором слоте может стоять процедура, вычисляющая возраст по дате рождения и текущей дате.

Процедуры, располагающиеся в слоте, называются связанными процедурами.

Чаще всего используются процедуры:

«если - добавлено» - выполняется, когда новая информация помещается в слот;

«если - удалено» - выполняется, когда информация удаляется из слота;

«если - нужно» - выполняется, когда запрашивается информация из слота, а он пустой.

Эти процедуры могут проверять, что при изменении значения производятся соответствующие действия.

Совокупность фреймов, моделирующая какую-нибудь предметную область, представляет собой иерархическую структуру, в которую соединяются фреймы. На верхнем уровне иерархии находится фрейм, содержащий наиболее общую информацию, истинную для всех остальных фреймов. Фреймы обладают способностью наследовать значения характеристик своих родителей, находящихся на более высоком уровне иерархии. Значения характеристик фреймов могут передаваться по умолчанию фреймам, находящимся ниже них в иерархии, но, если последние содержат собственные значения данных характеристик, то в качестве истинных данных принимаются именно они. Это обстоятельство позволяет легко учитывать во фреймовых системах различного рода исключения. Различают статические и динамические системы фреймов. В системах статических фреймы не могут быть изменены в процессе решения задачи, в динамических системах это допустимо. Наиболее ярко достоинства фреймовых систем представления знаний проявляется в том случае, если связи между объектами изменяются нечасто и предметная область насчитывает немного исключений.

Значения слотов представляются в системе в единственном экземпляре, поскольку включается только в один фрейм, описывающий наиболее общее понятие из всех тех, которые содержат слот с данным именем. Такое свойство систем фреймов дает возможность уменьшить объем памяти, необходимый для их размещения в компьютере. Однако основное достоинство состоит не в экономии памяти, а в представлении в БЗ связей, существующих между понятиями предметной области.

2.5 Представление знаний с использованием семантических сетей

Семантическая сеть используется для описания метода представления знания, основанного на сетевой структуре. Этот метод является одним из наиболее эффективных методов хранения знаний. Семантические сети состоят из:

узлов, соответствующих объектам, понятиям и событиям;

дуг, связывающих узлы и описывающих отношения между ними.

Иными словами, семантическая сеть отображает совокупность объектов предметной области и отношений между ними. При этом, объектам соответствуют вершины сети, а отношениям - соединяющие их дуги. В семантическую сеть включаются только те объекты предметной области, которые необходимы для решения прикладных задач. В качестве объектов могут выступать события, действия, обобщенные понятия или свойства объектов.

Вершины сети соединяются дугой, если соответствующие объекты предметной области находятся в каком-либо отношении.

Наиболее распространенными являются следующие типы отношений:

«является» - означает, что объект входит в состав данного класса;

«имеет» - позволяет задавать свойства объектов.

Возможны также отношения вида:

«является следствием» - отражает причинно-следственные связи;

«имеет значение» - задает значение свойств объектов.

2.6 Представление знаний в виде нечетких высказываний

Методы построения математических моделей часто основаны на неточной, но в объективной информации об объекте. Однако возможны ситуации, когда при построении моделей решающее значение имеют сведения, полученные от эксперта, обычно качественного характера. Они отражают содержательные особенности изучаемого объекта и формулируются на естественном языке. Описание объекта в таком случае носит нечеткий характер.

Например:

В булевой алгебре 1 представляет истину, а 0 - ложь. То же имеет место и в нечеткой логике, но, кроме того используются также все дроби между 0 и 1, чтобы указать на частичную истинность [2, 5 - 11]. Так запись «µ(высокий(Х)) = 0,75» говорит о том, что предположение «Х - высокий» в некотором смысле на три четверти истинно, а на одну четверть ложно.

Для комбинирования нецелочисленных значений истинности в нечеткой логике определяются эквиваленты логических операций:

µ1 И µ2 = min (µ1, µ2);

µ1 ИЛИ µ2 = max (µ1, µ2);

НЕ µ1 = 1 - µ1.

Таким образом, обрывочные сведения можно комбинировать на основе строгих и согласованных методов.

Слабым моментом в применении нечеткой логики является отображение (функция принадлежности). Предположим, возраст Х - 40 лет. Насколько истинно предположение, что Х - старый. Равна ли эта величина 0,5, поскольку Х прожил примерно полжизни, или величины 0,4 и 0,6 более реалистичны. Необходимо решить, какую функцию лучше использовать для отображения возраста в интервал от 0 до 1.

Чем, например, кривая лучше, чем линейная зависимость. Для предпочтения одной формы функции другой нет объективных обоснований, поэтому в реальной задаче будут присутствовать десятки и сотни подобных функций, каждая из которых до некоторой степени является произвольной. Значит в системах, основанных на нечеткой логике, необходимо предусмотреть средства, позволяющие модифицировать функции принадлежности.

Еще одной проблемой является проблема взвешивания отдельных сведений. Предположим, например, что мы располагаем некоторой совокупностью нечетких правил:

Правило 1: ЕСЛИ нить Х горит медленно И при горении нити Х образуется твердый шарик бурого цвета ТО нить Х - капроновая;

Правило 2: ЕСЛИ нить Х вне пламени гаснет И при горении нити Х чувствуется запах сургуча ТО нить Х - капроновая.

Заключение

В заключении хочется сказать, что было очень немного top-down обсуждения вопросов представления знаний и исследования в данной области is a well aged quiltwork. Есть хорошо известные проблемы, такие как «spreading activation, « (задача навигации в сети узлов)»категоризация» (это связано с выборочным наследованием; например вездеход можно считать специализацией (особым случаем) автомобиля, но он наследует только некоторые характеристики) и «классификация». Например помидор можно считать как фруктом, так и овощем.

В области искусственного интеллекта, решение задач может быть упрощено правильным выбором метода представления знаний. Определенный метод может сделать какую-либо область знаний легко представимой. Например диагностическая экспертная система Мицин использовала схему представления знаний основанную на правилах. Неправильный выбор метода представления затрудняет обработку. В качестве аналогии можно взять вычисления в индо-арабской или римской записи. Деление в столбик проще в первом случае и сложнее во втором. Аналогично, не существует такого способа представления, который можно было бы использовать во всех задачах, или сделать все задачи одинаково простыми.

Список используемых источников

1. Благодатских В.А., Волнин В.А., Поскакалов К.Ф. Стандартизация разработки программных средств. - М: Финансы и статистика, 2003.

2. Вендров А.М. Проектирование программного обеспечения экономических информационных систем - М: Финансы и статистика, 2002.

3. Вендрова А.М. Практикум по проектированию программного обеспечения экономических информационных систем - М: Финансы и статистика, 2002.

4. Черемных С.В., Семенов И.О., Ручкин В.С. Структурный анализ систем: IDEF-технологии - М: Финансы и статистика, 2001.