Смекни!
smekni.com

Сравнительное исследование эффективности методов сортировки Флойда и Шелла (стр. 2 из 2)

Метод сортировки Шелла также известен под именем Shellsort и метода сортировки с «убывающим смещением», поскольку каждый проход характеризуется смещением h, таким, что сортируются записи, каждая из которых отстоит от предыдущей на h позиции. Последовательность значений смещений 8, 4, 2, 1 не следует считать незыблемой; можно пользоваться любой последовательностью ht-1, ht-2, …, h0. но последнее смещение h0 должно быть равно 1. Например, в таблице 2 продемонстрированная сортировка тех же данных со смещениями 7, 5, 3, 1. Как будет показано ниже, выбор значений смещений на последовательных проходах имеет весьма существенное значение для скорости сортировки.

Сортировка Шелла.

Алгоритм D (сортировка Шелла). Запись R1,…, RNперекомпоновываются в том же адресном пространстве памяти. После завершения сортировки их ключи будут упорядочены: K1

KN. Для управления процессом сортировки используется вспомогательная последовательность смещений ht-1, ht-2, …, h0, где h0 =1; правильно выбрав эти значения в последовательности, можно значительно сократить время сортировки. При t=1 этот алгоритм сводится к алгоритму S.

D1: [Цикл по s.] Выполнить шаг D2 при s =t –1, t-2, …, 0, после чего завершить процедуру.

D2: [Цикл по j.] Присвоить h¬hs и выполнить шаг от D3 до D6 при h < i < N. (Для сортировки элементов, отстоящих один от другого на h позиций, воспользуемся методом простых вставок и в результате получим Ki

Ki+h для 1
i
N-h. Шаги от D3 до D6, по существу, такие же, как соответственно от S2 до S5 в алгоритме S.)

D3. [Установка I, K, R.] Присвоить i¬j – h, K¬Ki, R¬Rj.

D4. [Сравнение K: Ki.] Если K

Ki, то перейти к шагу D6.

D5. [Перемещение Ri, уменьшение i.] Присвоить Ri+h¬Ri, затем i¬i – h. Если I>0, то возвратиться к шагу D4.

D6. [Перемещение R на место Ri+h.] Присвоить Ri+h¬Ri.

Анализ Метода Шелла.

Для рационального выбора последовательности значений смещений сортировки ht-1,…, h0 для алгоритма D нужно проанализировать время выполнения как функцию от этих смещений. Такой анализ приводит к постановки очень красивых, но еще не до конца решенных математических задач; никому до сих пор не удалось найти наилучшею возможную последовательность смещений для больших N. Тем не менее известно довольно много интересных свойств сортировки методом Шелла с убывающим смещением.

Метод Флойда

Данный вид сортировки не рекомендуется для небольшого числа элементов, как, скажем, в нашем программном обеспечении. Однако для большого количества элементов пирамидальная сортировка оказывается очень эффективной, и чем больше число элементов, тем эффективнее.

Пирамидальная сортировка требует N∙Log2N шагов даже в худшем случае. Такие отличные характеристики для худшего случая – одно из самых выгодных качеств пирамидальной сортировки.

Но в принципе для данного вида сортировки, видимо, больше всего подходят случаи, когда элементы более или менее рассортированы в обратном порядке, т.е. для нее характерно неестественное поведение. Очевидно, что при обратном порядке фаза построения пирамиды не требует никаких пересылок.

Пирамидаопределяется как некоторая последовательность ключей

K[L],…, K[R], такая, что

K[i] ≤ K[2i] & K[i] ≤ K [2i + 1], (1)

длявсякого i = L,…, R/2. Если имеется массив К[1], К[2],…, К[R], который индексируется от 1, то этот массив можно представить в виде двоичного дерева. Пример такого представления при R=10 показан на рисунке 2.

Рис. 2 –Массив ключей, представленный в виде двоичного дерева

Дерево, изображенное на рисунке 2, представляет собой пирамиду, поскольку для каждого i = 1, 2,…, R/2 выполняется условие (1). Очевидно, последовательность элементов с индексами i = R/2+1, R/2+2,…., R (листьев двоичного дерева), является пирамидой, поскольку для этих индексов в пирамиде нет сыновей.

Способ построения пирамиды «на том же месте» был предложен Р. Флойдом. В нем используется процедура просеивания (sift), которую рассмотрим на следующем примере.

Предположим, что дана пирамида с элементами К[3], К[4],…, К[10] нужно добавить новый элемент К[2] для того, чтобы сформировать расширенную пирамиду К[2], К[3], К[4],…, К[10]. Возьмем, например, исходную пирамиду К[3],…, К[10], покачанную на рисунке 3, и расширим эту пирамиду «влево», добавив элемент К[2] =44.

Рис. 3 – Пирамида, в которую добавляется ключ К[2]=44

Добавляемый ключ К[2] просеивается в пирамиду: его значение сравнивается с ключами узлов-сыновей, т.е. со значениями 15 и 28. Если бы оба ключа-сына были больше, чем просеиваемый ключ, то последний остался бы на месте, и просеивание было бы завершено. В нашем случае оба ключа-сына меньше, чем 44, следовательно, вставляемый ключ меняется местами с наименьшим ключом в этой паре, т.е. с ключом 15. Ключ 44 записываетсяв элемент К[4], а ключ 15 – в элемент К[2]. Просеивание продолжается, поскольку ключи-сыновья нового элемента К[4] оказываются меньше его – происходит обмен ключей 44 и 18. В результате получаем новую пирамиду, показанную на рисунке 4.

В нашем примере получалось так, что оба ключа-сына просеиваемого элемента оказывались меньше его. Это не обязательно: для инициализации обмена достаточно того, чтобы оказался меньше хотя бы один сыновей ключ, с которым и производится обмен.

Просеивание элемента завершается при выполнении любого из двух условий: либо у него не оказывается потомков в пирамиде, либо значение его ключа не превышает значений ключей обоих сыновей.

Рис. 4 – Просеивание ключа 44 в пирамиду

Алгоритм просеивания в пирамиду допускает рекурсивную формулировку:

1)просеивание элемента с индексом temp,

2)при выполнении условий остановки – выход,

3)определение индекса q элемента, с которым выполняется обмен,

4)обмен элементов с индексами temp и q,

5)tmp:= q,

6)перейти к п. 1.

Этот алгоритм в применении к нашему массиву а реализован в этом коде подпрограммы, который выполняет просеивания в пирамиду с максимальным индексом R:

begin

k:=2*t;

if k>i then t:=0

else

begin

if k<i then

if Arr[k]>Arr [k-1] then inc(k); Kol_sravFloud:= Kol_sravFloud +1;

if Arr [t-1]>=Arr [k-1] then begin t:=0; Kol_sravFloud:= Kol_sravFloud +1

end else

begin

Kol_sravFloud:= Kol_sravFloud +1;

Tmp:=Arr [k-1];

Arr [k-1]:=Arr [t-1];

Arr [t-1]:=Tmp; // Переустановка Элементов

t:=k;

Kol_PerFloud:= Kol_PerFloud +1;

end;

Код учитывает индексацию вектора а от нуля.

Теперь рассмотрим процесс создания пирамиды из массива а[0], а[1],…, a[Highlndex]. Элементы этого массива индексируются от 0, а пирамида от 1. Ясно, что элементы a [N/2], a [N/2+1],…, a[Highlndex] уже образуют пирамиду, поскольку не существует двух индексов i (i= N/2+1, N/2+2, …) и j, таких, что, j=2i (или j=2i+l). Эти элементы составляют последовательность, которую можно рассматривать как листья соответствующего двоичного дерева. Теперь пирамида расширяется влево: на каждом шаге добавляется новый элемент и при помощи просеивания помещается на соответствующее место. Этот процесс иллюстрируется следующим примером.

Процесс построения пирамиды

44 55 12 42 94 18 06 67

44 55 12 42 94 18 06 67

44 55 06 42 94 18 12 67

44 42 06 55 94 18 12 67

06 42 12 55 94 18 44 67

Примечание – жирным шрифтом отмечены ключи, образующие пирамиду на текущем шаге ее построения

Для того, чтобы получить не только частичную, но и полную упорядоченность элементов нужно проделать N сдвигающих шагов, причем после каждого шага на вершину дерева выталкивается очередной (наименьший элемент). Возникает вопрос, где хранить «всплывающие» верхние элементы? Существует такой выход: каждый раз брать последнюю компоненту пирамиды (скажем, это будет х), прятать верхний элемент на место х, а х посылать в начало пирамиды в качестве элемента а[0] и просеивать его в нужное место. В следующей таблице приводятся необходимые в этом случае шаги:

Пример преобразования пирамиды в упорядоченную последовательность

06 42 12 55 94 18 44 67

12 42 18 55 94 67 44 06

18 42 44 55 94 67 12 06

42 55 44 67 94 18 12 06

44 55 94 67 42 18 12 06

55 67 94 44 42 18 12 06

67 94 55 44 42 18 12 0б

94 67 55 44 42 18 12 06 – Результат

Из примера сортировки видно, что на самом деле в результате мы получаем последовательность в обратном порядке. Но это легко можно исправить, изменив направление отношения.


Состав проекта

Данный проект состоит из трёх форм и трех модулей: модуля главной интерфейсной формы, модуля формы истории сортировки, модуля формы «О программе».

Главная форма имеет вид:

На форме рамположены компоненты: RadioGroup1 служащий для выбора вида сортировки и типа сортировки; SpinEdit1 – для изменения длины сортируемой последовательности; компонент NDgrid, являющийся окном вывода отсортированного массива; MainMenu1 для вызова окна истории сортировки и окна с информацией о создателях программы; Edit1 служит для вывода массива, также на форме имеется несколько компонентов типа TLabel служащих для пояснения назначения других компонентов.

Форма FormAbout имеет вид:

Данная форма служит для отображения информации о данной программе.

Данная форма содержит компонент Button1 для закрытия данной формы, компонент Label1 содержащий название программы и информацию о создателе данной программы. Форма Form2 имеет вид:

Данная форма служит для графиков

На форме располагаются компоненты Chart1 и Chart2, которые служат для отображения графиков.