Для построения глобального сплайна, т.е. сплайна с дефектом 1 необходимо, начиная со 2-го узла, поставить условие непрерывности 2-й производной, т.е.2-я производная при подходе к точке 2 и дальше слева (x1-0) должна равняться второй производной при подходе справа (x1+0).
Такие равенства можно составить для всех внутренних узлов x1 до xn-1. Затем используем условия на краях x0 и xn, получаем систему уравнений, которая и обеспечит дефект 1.
Очевидно, что при наличии S3 на соответствующих участках, построение таких равенств не представляет особого труда.
Приравнивая эти значения, для определения m получим СЛАУ.
В двух крайних точках:
Если функция задана в виде таблиц, то для вычисления производных используеться результаты, получаемые при численном диференцировании, порядок точности которых не ниже 3-ей степени.
Задание: найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в неравносторонних узлах таблицы. Дана функция:
Составляем таблицу узлов интерполяции:
Поскольку n=5 строим интерполяционный многочлен L5 (x):
L5 (x) =P50*f (x0) +P51*f (x1) + P52*f (x2) + P53*f (x3) + P54*f (x4) + P55*f (x5)
В результате получаем многочлен:
L5 (x) = 1.049*10-3*x5+5.4373*10-3*x4 +0.027*x3 - 0,936*x2 + 0,424*x +0.42278, X= - 0.48051
Подставляя заданное значение аргумента, получаем ответ:
L5 (x) = 0,00011
При подстановки того аргумента в заданную функцию, получаем такой же результат:
f (-0.48051) =0.00011
Задание: найти приближенное значение корня данном значении функции с помощью интерполяционного многочлена Лагранжа, если функция задана в равносторонних узлах таблицы.
Дана функция:
Составляем таблицу узлов интерполяции:
i | Xi | Yi |
0 | -0,7 | -0.34091 |
1 | -0,5 | -0.02638 |
2 | -0,3 | 0.21059 |
3 | -0,1 | 0.37098 |
4 | 0,1 | 0.4559 |
Поскольку n=4 строим интерполяционный многочлен L4 (y):
L4 (y) =P40*x0+P41*x1+ P42*x2+ P43*x3+ P44*x4
В результате получаем многочлен:
L4 (y) = 7.99*y4-0.8176*y3 - 0.4932* y2 +0.9008*y - 0.4759
y= 0
Подставляя заданное значение функции, получаем ответ:
L4 (y) = - 0.47591
Таким образом, получаем приближенное значение корня:
X= - 0.47591
При подстановки этого аргумента в заданную функцию, получаем результат:
f (-0,47591) = 0.00625
Задание:
На участке [b,b+2] выбрать 3 точки (b,b+1,b+2), построить два сплайна на двух отрезках, убедиться в том, что в точке b+1 производная не терпит разрыва.
Построим таблицу:
i | 1 | 2 | 3 |
xi | 0 | 1 | 2 |
yi | 0.42279 | -0.4955 | -1.93404 |
Для построения сплайна используем формулы:
h=
Таким образом, нам необходимо, чтобы вторая производная была непрерывна, т.е. получить сплайн с дефектом 1.
Для построения глобального сплайна необходимо, начиная со второго узла поставить условие непрерывности 2-ой производной, т.е.2-ая производная при подходе к точке 2 и дальше слева (x1-0) должна равняться 2-ой производной при подходе справа (x1+0):
Приравнивая эти значения, получаем:
Для нашей функции получаем:
0.42435 - 2.10346После того, как мы нашли m1, можем построить графики (рисунок 3.2).