Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 5 из 8)

Для построения глобального сплайна, т.е. сплайна с дефектом 1 необходимо, начиная со 2-го узла, поставить условие непрерывности 2-й производной, т.е.2-я производная при подходе к точке 2 и дальше слева (x1-0) должна равняться второй производной при подходе справа (x1+0).

Такие равенства можно составить для всех внутренних узлов x1 до xn-1. Затем используем условия на краях x0 и xn, получаем систему уравнений, которая и обеспечит дефект 1.

Очевидно, что при наличии S3 на соответствующих участках, построение таких равенств не представляет особого труда.

Приравнивая эти значения, для определения m получим СЛАУ.

В двух крайних точках:

Если функция задана в виде таблиц, то для вычисления производных используеться результаты, получаемые при численном диференцировании, порядок точности которых не ниже 3-ей степени.

3.4 Использование интерполяции на практике

3.4.1 Интерполяция с помощью многочлена Лагранжа

Задание: найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в неравносторонних узлах таблицы. Дана функция:

Составляем таблицу узлов интерполяции:

Поскольку n=5 строим интерполяционный многочлен L5 (x):

L5 (x) =P50*f (x0) +P51*f (x1) + P52*f (x2) + P53*f (x3) + P54*f (x4) + P55*f (x5)

В результате получаем многочлен:

L5 (x) = 1.049*10-3*x5+5.4373*10-3*x4 +0.027*x3 - 0,936*x2 + 0,424*x +0.42278, X= - 0.48051

Подставляя заданное значение аргумента, получаем ответ:

L5 (x) = 0,00011

При подстановки того аргумента в заданную функцию, получаем такой же результат:

f (-0.48051) =0.00011

3.4.2 Обратная интерполяция

Задание: найти приближенное значение корня данном значении функции с помощью интерполяционного многочлена Лагранжа, если функция задана в равносторонних узлах таблицы.

Дана функция:

Составляем таблицу узлов интерполяции:

i Xi Yi
0 -0,7 -0.34091
1 -0,5 -0.02638
2 -0,3 0.21059
3 -0,1 0.37098
4 0,1 0.4559

Поскольку n=4 строим интерполяционный многочлен L4 (y):

L4 (y) =P40*x0+P41*x1+ P42*x2+ P43*x3+ P44*x4

В результате получаем многочлен:

L4 (y) = 7.99*y4-0.8176*y3 - 0.4932* y2 +0.9008*y - 0.4759

y= 0

Подставляя заданное значение функции, получаем ответ:

L4 (y) = - 0.47591

Таким образом, получаем приближенное значение корня:

X= - 0.47591

При подстановки этого аргумента в заданную функцию, получаем результат:

f (-0,47591) = 0.00625

3.4.3 Интерполяция сплайнами

Задание:

На участке [b,b+2] выбрать 3 точки (b,b+1,b+2), построить два сплайна на двух отрезках, убедиться в том, что в точке b+1 производная не терпит разрыва.

Построим таблицу:

i 1 2 3
xi 0 1 2
yi 0.42279 -0.4955 -1.93404

Для построения сплайна используем формулы:

h=

Таким образом, нам необходимо, чтобы вторая производная была непрерывна, т.е. получить сплайн с дефектом 1.

Для построения глобального сплайна необходимо, начиная со второго узла поставить условие непрерывности 2-ой производной, т.е.2-ая производная при подходе к точке 2 и дальше слева (x1-0) должна равняться 2-ой производной при подходе справа (x1+0):

Приравнивая эти значения, получаем:

Для нашей функции получаем:

0.42435

- 2.10346

После того, как мы нашли m1, можем построить графики (рисунок 3.2).


Рисунок 3.2 - Глобальная интерполяция сплайнами

Также можно сравнить с графиком самой функции (рисунок 3.3).

Рисунок 3.3 - Сравнение графика функции и глобальной интерполяции

3.5 Программа для использования интерполяции

На рисунках 3.4 представлена программа для использования интерполяции сплайнами. Пользователь вводит необходимые данные и при нажатии кнопки "График" строится кубический сплайн.

Листинг программы представлен в приложении В.

Рисунок 3.4 - Программа для использования интерполяции сплайнами

4. Итерационные методы решения систем линейных алгебраических уравнений

4.1 Общие сведения

К численным методам линейной алгебры относятся численные методы решения систем линейных алгебраических уравнений. Методы решения СЛАУ разбиваются на две группы. К первой группе принадлежат так называемые точные или прямые методы - алгоритм, позволяющий получить решение системы за конечное число арифметических действий. Вторую группу составляют приближенные методы, в частности итерационные методы решения СЛАУ.

4.2 Метод простой итерации

4.2.1 Описание метода

Рассмотрим СЛАУ вида

Ax = B, где А - матрица. (1)

A = {aij}i, j = 1…n

B = {bi}x = {xi}

Если эту систему удалось привести к виду x = Cx + D, то можно построить итерационную процедуру

xk = Cxk-1 + D

xk → x*, где х* - решение заданной системы.

В конечном варианте система будет имееть вид:

x1=c11x1+c12x2+c13x3+…c1nxn+d1

x2=c21x1+c22x2+c23x3+…c2nxn+d1

x3=c31x1+c32x2+c33x3+…c1nxn+d3