Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 7 из 8)

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 2-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 3-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса:

:

На 4-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

Необходимая точность достигнута на 4-й итерации. Таким образом, итерационный процесс можно прекратить.

4.3.3 Программа дл решения СЛАУ методом Зейделя

На рисунке 4.2 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций.

Листинг программы приведен в приложении Г.

Рисунок 4.2 - Программа "Метод Зейделя"

4.4 Сравнительный анализ

Можно заметить, что в методе Зейделя быстрее мы достигаемой нужной точности, в нашем случае в точность была достигнута на 4-й итерации, когда в методе простых итераций она была достигнута на 6-й итерации. Но в то же время в методе Зейделя ставится больше условий. Поэтому вначале нужно произвести иногда довольно трудоемкие преобразования. В таблице 4.1 приведены результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации:

Таблица 4.1 - Результаты решения СЛАУ

№ шага Метод постой итерации Метод Зейделя
0 x1=1.34x2=-1.75x3=0.5x4=0.65 x1=1.34x2=-1.75x3=0.5x4=0.65
1 x1=1.277x2=-1.56227x3=0.3147x4=0.5335 x1=1.277x2=-1.57047x3=0.3324x4=0.5837
2 x1=1.31335x2=-1.6127x3=0.3647x4=0.5884 x1=1.32469x2=-1.5974x3=0.355808x4=0.58638
3 x1=1.315391x2=-1.5935x3=0.34936x4=0.57867 x1=1.318014x2=-1.5945x3=0.354137x4=0.58556
4 x1=1.3173416x2=-1.5968x3=0.35577x4=0.58589 x1=1.318367x2=-1.59481x3=0.35437x4=0.58554
5 x1=1.3179137x2=-1.59467x3=0.35371x4=0.58462
6 x1=1.3181515x2=-1.59506x3=0.35455x4=0.58557

5. Сравнительный анализ различных методов численного дифференцирования и интегрирования

5.1 Методы численного дифференцирования

5.1.1 Описание метода

Предположим, что в окрестности точки xiфункция F (x) дифференцируема достаточное число раз. Исходя из определения производной:

Для оценки погрешностей формул численного дифференцирования используется формула Тейлора:

(1)

Отбрасывая последнее слагаемое, мы можем вычислить производную.

Тогда отброшенное слагаемое будет являться погрешностью в формуле (1). В зависимости от того, какая точка выбирается за x отличают правостороннюю и левостороннюю производную.

Если для вычисления

вместо x возьмем xi-1, то получится левосторонняя производная (2), а если xi+1, правосторонняя производная (1).

(1)

(2)

Отсюда видно, что порядок погрешности x - xi, т.е. при использовании

xi-1 или xi+1, порядка O (h).

При достаточно очевидном результате выражения (1) и (2) имеют низкую точность, т.е. высокую погрешность. Поэтому на практике больше используются так называемая центрально-симметричная формула, имеющая большой порядок точности.

Очевидно, что эта формула используется только для внутренних точек отрезка.

5.1.2 Нахождение производной

Вычислим производную функции f (x) =sin (x) в какой-либо точке на отрезке [0,π] двумя способами.

Разобьем отрезок на части:

h=

Найдем производную в точке x=

.

По центрально-симметричной формуле:

По формуле правосторонней производной:

=cos (
) =0.9659,

значит вычисление производной по центрально-симметричной формуле более точнее.

5.2 Методы численного интегрирования

5.2.1 Общие сведения

Для вычисления определённого интеграла используется формула:

Вычисление интеграла в таком виде не всегда удается, поэтому возникает задача приближенного значения этого интеграла.

В теории численного интегрирования используются следующие формулы для вычисления:

Формула левых прямоугольников:

Формула правых прямоугольников:

У этих формул погрешность порядка О (h).

Улучшения результатов можно добиться путем интерполирования (интерполирование можно вести на отрезке [a,b]). Интерполяция первого и второго порядка носит

Формула трапеции:

Формула Симпсона

, где n=2m

h=b-a/n

5.2.2 Нахождение определенного интеграла

Вычислим интеграл для функции

разными способами.

Разобьем отрезок [0,

] на части:

h=

По формуле левых прямоугольников:

По формуле трапеции:

По формуле Симпсона:

При m=3:

При m=2:

Сравним полученные результаты с табличным:

=1

Можно сделать вывод, при вычислении определенного интеграла наибольшую степень точности дает формула Симпсона.

5.3 Решение ОДУ

5.3.1 Решение ОДУ методом Эйлера

,

Далее приведены результаты вычислений.