Далее приведены результаты вычислений.
Далее приведены результаты вычислений.
Поправка Ричардсона Riдля метода Эйлера:
Поправка Ричардсона Riдля метода Рунге-Кутта:
Обыкновенные дифференциальные уравнения являются моделью динамических систем. То есть систем меняющих свои свойства при изменении независимой переменной в качестве таковой очень часто выступает время.
Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y (x). Их можно записать в виде
,где х - независимая переменная.
Наивысший порядок n входящей в уравнение
производной называется порядком дифференциального уравнения.
Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.
Графические методы используют геометрические построения.
Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.
Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.
Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров.
Существуют различные задачи для ОДУ, мы будем рассматривать задачу Коши. Из курса математики известны условия существования единственности решения задачи Коши и также известно, что аналитически эта задача решается в достаточно редких случаях. То есть для того чтобы ОДУ являлась моделью некоторого динамического процесса, имела аналитическое решение приходится принимать слишком много предположений упрощающих исходную постановку. Что далеко не всегда является продуктивным.
Начальные условия: х=х0, у=у0,
=f (x,y). Задача заключается в том, что необходимо построить функцию y=F (x) или Ф (х, у) =0, производная которой удовлетворяет заданному дифференциальному уравнению. Причем кривая соответствующей этой функции проходит через точку (х0, у0). Мы будем искать на заданном отрезке [a, b] х0=а значения некоторой функции, которые близки к соответствующим значениям искомого решения. Иногда говорят, что мы строим сеточную функцию, если разобьем отрезок [a, b] на n частей (h= (b-a) /n, где h - шаг сетки), тогда хi=x0+ih. Заменим в левой части производную правой разностью. При этом значения функции узлах заменим значениями сеточной функции :Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене
надопускается погрешность
.Будем считать для простоты узлы равноотстоящими, т.е.
Тогда из равенства
Получаем
Заметим, что из уравнения
следует .Поэтому
представляет собой приближенное нахождение значение функции
в точке при помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу. Полагая i=0, с помощью соотношениянаходим значение сеточной функции
при : .Требуемое здесь значение
задано начальным условием , т.е. . Аналогично могут быть найдены значения сеточной функции в других узлах:Построенный алгоритм называется методом Эйлера, графически он представлен на рисунке 6.1.
Рисунок 6.1 -Метод Эйлера
Одним из способов улучшения метода Эйлера является метод Рунге-Кутты. Формула Рунге - Кутты 4-го порядка:
, , ,В ходе выполнения курсовой работы был проведен сравнительный анализ численных методов, таких как итерация, интерполяция, численное дифференцирование и интегрирование, а также метод Эйлера.
В результаты все поставленные задачи были выполнены, цели достигнуты. Мы приобрели навыки в применении различных численных методов на практике. А также были исследованы различные методы.
Теперь перед нами стоит задача в применении приобретенных знаний в своей будущей профессиональной деятельности.
1. Р.Ф. Хемминг "Численные методы (для научных работников и инженеров)". - Москва, 1972.
2. А.А. Амосов, А.Ю. Дубинский, Н.В. Копченова "Вычислительные методы для инженеров". - Москва, "Высшая школа", 1994.
3. Ф.В. Формалев, Д.Л. Ревизников "Численные методы". - М.: ФИЗМАТЛИТ, 2004.
4. Е.А. Волков. Численные методы: Учеб. Пособие для вузов - М.: Наука. Гл. ред. физ-мат. лит., 1987. - 248 с.