Работает схема следующим образом. В режиме приема кадра ЦПЭ активизирует схему приема и далее данные поступают в ОЗУ ПР без участия процессора под управлением КПДП. Передача кадра в среду также проходит под управлением КПДП. Процессор должен лишь инициировать ее. ОЗУ ПД пакетов предназначено для временного хранения пакетов, сформированных станцией и предназначенных для выдачи в сеть связи.
Схема синхронизации (СИ), предназначена для выработки серий импульсов синхронизации и обеспечения возможности внешней синхронизации от принимаемой информации.
Буферный регистр принимаемой информации необходим для согласования скорости обмена буферной памяти станции и скорости передачи информации в физической среде. Этот регистр преобразует последовательный код в параллельный.
Буферный регистр выдаваемой информации предназначен для сопряжения скорости обмена буферной памяти со скоростью передачи в физической среде и преобразования параллельного кода в параллельный.
Схема дешифрации манчестерского кода обеспечивает выделение информационных разрядов "данные" и "не данные" из манчестерского кода принимаемого кадра и синхронизацию станции от внешних принимаемых кадров.
Порт ввода-вывода станции обеспечивает сопряжение станции с абонентом, который данная станция обслуживает.
4. ОПИСАНИЕ ГРАФ - СХЕМЫ РЕЖИМА РАБОТЫ ЛЛС
Алгоритмы работы станции в режиме ЛЛС описаны в /2/.
Граф-схемы алгоритма работы станции в фазе ликвидации логического соединения представлены на рис.4.1 и рис. 4.2 для инициирующей и приемной стороны соответственно. Опишем работу этих граф-схем.
Ликвидация логического соединения:
Она может быть осуществлена по инициативе любой из взаимосвязанных станций. Инициирующая станция посылает команду DISC (disconnect) и запускает таймер T1. После получения ответа UA (или DM) от удаленной станции таймер T1 выключается и процедура переходит в фазу разъединения. Если время таймера T1 истекло, то инициирующая станция повторяет передачу команды DISC до N2 раз.
Фаза разъединения заканчивается:
- у инициирующей станции после получения ответа UA или DM;
- у удаленной станции после отправки согласия UA на разъединение.
Функционирование станции в режиме разъединения:
В режиме разъединения станция должна отвечать на команды обычным образом и посылать ответ DM при получении DISC (disconnect). При получении любой команды с битом P=1 станция посылает ответ DM с битом F=1.
Все другие команды, принимаемые станцией по логическому каналу, игнорируются.
Примечание:
DISC - разъединение (U-кадр);
DM - режим разъединения (U-кадр) (Disconnect Mode),используется для сообщения удаленной станции о статусе местной станции, если она логически отсоединена от ЗПД и находится в фазе разъединения.
Программа ликвидации логического соединения, представлена в Прил.1.
Рис.4.1. Инициирующая станция
Рис.4.2. Приемная сторона
5. ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ СХЕМЫ СТАНЦИИ ЛВС
Расчет объема буферного накопителя [4].
Объем буферного накопителя должен выбираться из условия обеспечения заданной вероятности потери пакета. Воспользуемся формулой из /4/:
где N – емкость накопителя ( в числе пакетов ) буфера;
r – загрузка системы.
Вероятность потери определяется по формуле:
Допустимое значение вероятности потери пакетов в реальных сетях, как правило, не превышает
Примем Pпот равной
Исходя из того, что максимальный размер пакета, используемого данной станцией, равен 2048, получаем требуемый объем ОЗУ:
Vозу = 18 × 2048 » 4 Кбайт.
6. РАСЧЕТ ЭФФЕКТИВНОСТИ РАБОТЫ СТАНЦИИ
Эффективность методов доступа к среде определяется как среднее время задержки, зависящее от коэффициента загрузки среды передачи. Модель сети на структуре шина приведена на рис.6.1 [1].
Пусть имеется N узлов с очередями, которые подключены к общей среде передачи. На каждый узел от абонента поступает пуассоновский поток пакетов с интенсивностью l0 [пакетов/с]. Эти пакеты обслуживаются с интенсивностью m0 [пакетов/с]. Пусть известны времена распространения сигналов tij между узлами i и j и максимальное время распространения сигналов в среде tm. Пусть заданы средняя длина пакета Tpи скорость передачи в среде fd [бит/с].
Необходимо определить зависимость среднего времени задержки пакетов в узле t (от момента поступления пакетов от абонента в узел до передачи его в среду) от коэффициента использования среды передачи
где S - средняя (эффективная) скорость передачи информации в среде (бит/с).
Предполагаем, что коэффициент загрузки каждого узла равен r0, среднее время передачи пакета активным узлом получившим управление равно Тр, среднее время передачи управления от пассивного узла составляет время
Рис.6.1. Модель сети на структуре шина
Имеем следующие зависимости для коэффициента использования среды и среднего времени задержки пакетов в узле:
6.1 МД при произвольном расположении узлов на структуре шина
Здесь среднее время распространения между парой узлов:
Следовательно,
С учетом этого выражения и выражений (6.2) и (6.3) получим:
6.2 ИМД при произвольном расположении узлов на структуре шина
Среднее время распространения сигнала между парой узлов будет:
Среднее время передачи управления от активного узла:
Среднее время передачи управления от пассивного узла:
Тогда, подставляя полученные выражения в (6.2) и (6.3), получим:
6.3 Сравнение МД и ИМД на структуре шина
Разрабатываемая ЛВС в соответствии с техническим заданием имеет следующие параметры:
- скорость передачи данных по каналу связи fd = 1 Мбит/с;
- длина кадра – 512, 1024, 2048 бит;
- число станций в сети - N = 75 шт.;
- длина сети L = 1 км.
В этих условиях при длине пакета 2048 бит и длине кабеля 1000 м отношение максимального времени распространения сигнала к времени передачи пакета данных составит:
Будем предполагать, что длительность маркера составляет 5% от средней длины пакета, т.е.
Программа сравнения ИМД и МДШ для данной ЛВС приведена в Прил.2 вместе с результатами ее работы. По полученным результатам было построено семейство кривых для двух способов доступа, которые приведены на рис.6.2. Из анализа графиков следует, что:
- при малом коэффициенте загрузки канала среднее время задержки пакетов у маркерного и интервально-маркерного доступа отличается незначительно;
- при увеличении коэффициента загрузки канала задержки начинают расти, причем скорость роста графика для маркерного доступа несколько выше, чем для интервально-маркерного;
- существенное увеличение времени задержки зависит от длины кадра и появляется при коэффициенте использования канала выше 0,6 - 0,8 для МДШ и 0.8 - 1.0 для ИМДШ;
- при высоком коэффициенте использования канала (0.9 и выше) маркерный доступ проигрывает интервально-маркерному по времени задержки.
|
ЗАКЛЮЧЕНИЕ
В соответствии с техническим заданием в курсовом проекте была разработана станция локальной вычислительной сети с маркерным доступом на структуре шина. Была проведена оценка эффективности ЛВС с МД и ИМД при упорядоченной нумерации узлов.
Результаты расчетов показали, что более эффективным является ЛВС с ИМ доступом.
По заданной граф-схеме алгоритма работы станции была написана программа на языке команд микроконтроллера PIC16C64.
Программа представляет собой набор ассемблерных команд для приемной и передающей станций.
Была разработана принципиальная электрическая схема станции.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Крылов Ю.Д. Локальные вычислительные сети с маркерными способами доступа: Учеб. пособие. СПбГААП, СПб., 1995.
2. Стандарты по локальным вычислительным сетям: Справочник / Щербо В.К. и др.; под ред. С.И. Самойленко. М.: Радио и связь, 1990.