Рис.4. Устройство свертки по модулю q.
Устройство сравнения сравнивает r
Рис.5. Схема, иллюстрирующая принцип контроля суммирующего устройства.
Пусть в результате суммирования чисел N
Чаще всего используется q = 3, иногда выбирается q = 7. При увеличении значения q возрастает способность метода к обнаружению ошибок, но одновременно увеличивается объем контролирующего оборудования.
Рассмотрим пример применительно к схеме на рис. 5. Пусть q = 3, N
Эффективность контроля по модулю характеризуется данными, приведенными в табл. 2.
Таблица 2
В таблице указано, какую часть всех возможных комбинаций ошибок составляют ошибки, которые не обнаруживаются при контроле по модулю. Как видно из приведенных данных, обнаруживаются все однократные ошибки; доля ошибок высокой кратности, оказывающихся необнаруженными, при модуле 7 меньше, чем при модуле 3. Тем самым эффективность контроля по модулю 7 выше, чем при модуле 3. Однако при контроле по модулю 7 контрольная часть слов содержит три двоичных разряда (вместо двух разрядов при модуле 3) и, кроме того, сложнее схемы формирования остатков (схемы свертки).
В заключение рассмотрим построение схем свертки по модулю 3. Общим для этих схем является следующий метод получения остатка. Каждый разряд числа вносит определенный вклад в формируемый остаток. В табл. 3 приведены остатки от деления на 3 значений, выражаемых единицами отдельных разрядов (т.е. весовых коэффициентов разрядов). Эти остатки для единиц нечетных разрядов равны 1, для четных разрядов они равны 2. Следовательно, для получения остатка от деления на 3 всего числа достаточно просуммировать остатки для единиц отдельных его разрядов и затем для получения суммы найти остаток от деления на 3.
Таблица 3
Например, пусть N = 11001011
Схема свертки по модулю 3 для последовательной формы передачи чисел
Схема может быть выполнена в виде двухразрядного счетчика с циклом 3, построенного таким образом, что единицы нечетных разрядов поступающего на вход числа вызывают увеличение содержимого счетчика на единицу, а единицы четных разрядов вызывают увеличение числа в счетчике на два. Функционирование такого счетчика описывается табл. 4.
Здесь b— код, определяющий четность номера очередного разряда числа, поступающего на вход счетчика; примем для четных разрядов b = 0, для нечетных разрядов b = 1.
Таблица 4
Таблица 5
По этой таблице и таблице переходов JK-триггера (табл. 5) построены приведенные на рис. 6 карты, по которым находят логические выражения для входов триггеров ТТ1 и ТТ2 счетчика:
Рис.6. Карты, по которым находят логические выражения для входов триггеров ТТ1 и ТТ2 счетчика.
Представив выражения для J
получим схему межтриггерных связей на рис.7. Логическая переменная b формируется триггером 3.
Этот триггер переключается тактовыми импульсами (ТИ), следующими с частотой поступления разрядов числа на вход счетчика. Таким образом, в моменты поступления нечетных разрядов триггер 3 устанавливается в состояние 1 и b = 1, в моменты поступления четных разрядов b= 0.
Рис.7. Схема межтриггерных связей.
Схема свертки для параллельной формы представления числа
При параллельной форме представления числа обычно используется пирамидальный способ построения схемы свертки, показанный на рис. 8.
Элементы А первого яруса формируют остатки для пар разрядов числа, выдавая уровень лог. 1 на один из выходов А
Выходы элементов определяются следующими логическими выражениями: для первого яруса
для остальных ярусов
Если число разрядов n = 2
4.4 Понятие качества корректирующего кода
Одной из основных характеристик корректирующего кода является избыточность кода, указывающая степень удлинения кодовой комбинации для достижения определенной корректирующей способности.