В настоящей работе первому типу знаний будет соответствовать информация об измеримых (или наблюдаемых) свойствах объектов реального мира. Именно эта информация сведена в таблицу данных типа "объект-признак". Остальным типам знаний соответствуют ограничения на диапазоны значений, которые могут принимать признаки объекта (второй тип), информация о взаимозависимости признаков и о возможности описания одних признаков через другие, информация о статистических свойствах значений признаков,… Фактически, нас интересует знание второго и последующих типов – знание, которое человек добывает в процессе анализа информации, рассуждений, обобщений, проведения аналогий.
Естественным является требование представления знаний в виде, допускающем "тиражирование" – возможность передачи знаний другим людям. Для первого типа знаний возможно получение как объективных (точно измеренных) значений свойств объектов реального мира, так и субъективных, персонализированных, чувственных оценок значений этих свойств. Для знаний последующих типов для возможности передачи вводятся требования объективизации, достоверности, непротиворечивости [1].
Информационные единицы (знания) обладают гибкой структурой [2]. Для них выполняется "принцип матрешки" – рекурсивная вложенность одних информационных единиц в другие (это наблюдается и на примере вышеприведенной классификации из [1]).
Каждая информационная единица может быть включена в состав любой другой, и из каждой информационной единицы можно выделить некоторые составляющие ее единицы. Т.е. между отдельными информационными единицами возможно установление отношений типа "часть – целое", "род – вид" или "элемент – класс".
Для информационных единиц одного уровня иерархии семантика отношений может носить декларативный или процедурный характер [2]: две или более информационных единицы могут быть связаны декларативными отношениями "одновременно", "причина – следствие" или "быть рядом", либо процедурными отношениями типа "аргумент – функция".
Можно различать отношения структуризации, процедурные отношения, каузальные отношения и семантические отношения. С помощью первых задаются иерархии информационных единиц, вторые несут процедурную информацию, позволяющую находить (вычислять) одни информационные единицы через другие, третьи задают причинно-следственные связи, четвертые соответствуют всем остальным отношениям [2].
Приобретением знаний называется выявление знаний из источников и преобразование их в нужную форму (например, перенос в базу знаний экспертной системы) [2]. Источниками знаний могут быть книги, архивные документы, содержимое других баз знаний и т.п., т.е. некоторые объективизированные знания, переведенные в форму, которая делает их доступными для потребителя. Другим типом знаний являются экспертные знания, которые имеются у специалистов, но не зафиксированы во внешних по отношению к ним хранилищах. Экспертные знания являются субъективными. Еще одним видом субъективных знаний являются эмпирические знания, полученные путем наблюдения за окружающей средой. Ввод в базу знаний объективизированных знаний не представляет проблемы, выявление и ввод субъективных экспертных знаний достаточно трудны. Для извлечения и формализации экспертных знаний разработано множество стратегий интервьюирования эксперта и множество моделей представления знаний [2].
В когнитивной психологии изучаются формы репрезентации знаний, характерные для человека: представление класса понятий через его элементы; представление понятий класса с помощью базового прототипа, отражающего наиболее типичные свойства объектов класса; представление с помощью признаков[3]. Форма репрезентации знаний определяет используемую методологию выявления знаний и модель представления знаний.
К настоящему времени сформировалось три основных направления извлечения знаний. Эти направления могут использовать одни и те же математические методы; подходы, первоначально разработанные в рамках некоторого направления, могут применяться для решения задач из другого направления. Вот эти направления:
1. Методы самообучения и приобретения знаний в теории классических экспертных систем (Параграф 1.2.1).
2. Извлечение знаний из таблиц данных. Включает теорию статистических выводов и другие методы анализа данных (Параграф 1.2.2).
3. Теория идентификации систем (Параграф 1.2.3).
Исследуется автоматизированный процесс получения знаний, объясняющих имеющиеся факты и способных объяснять, классифицировать или предсказывать новые. В общем виде задача формулируется так [2]: по совокупности наблюдений (фактов) F, совокупности требований и допущений к виду результирующей гипотезы H и совокупности базовых знаний и предположений, включающих знания об особенностях предметной области, выбранном способе представления знаний, наборе допустимых операторов, эвристик и др., сформировать гипотезу Н: HÞF (Н "объясняет" F).
Общий вид гипотезы Н зависит от цели обобщения и выбранного способа представления знаний. Методы обобщения, включающие модели классификации, формирования понятий, распознавания образов, обнаружения закономерностей, определяются целями обобщения, способами представления знаний, общими характеристиками фактов, критериями оценки гипотез.
Для обобщения по выборкам совокупность фактов F имеет вид обучающей выборки – множества объектов, каждый из которых сопоставляется с именем некоторого класса. Целью обобщения в этом случае может являться:
- формирование понятий: построение по данным обучающей выборки для каждого класса максимальной совокупности его общих характеристик [4];
- классификация: построение по данным обучающей выборки для каждого класса минимальной совокупности характеристик, которая отличала бы элементы класса от элементов других классов;
- определение закономерности последовательного появления событий.
К методам обобщения по выборкам относятся лингвистические модели, методы автоматическогосинтеза алгоритмов и программ по примерам и другие [2].
В методах обобщения по данным априорное разделение фактов по классам отсутствует. Здесь могут ставиться следующие цели:
- формулирование гипотезы, обобщающей данные факты;
- выделение образов на множестве наблюдаемых данных, группировка данных по признакам (задача формирования понятий, определенная в модели обобщения по выборкам, также часто ставится без априорного разбиения обучающей выборки по классам) [4];
- установление закономерностей, характеризующих совокупность наблюдаемых данных [5].
Рассмотрим кратко связь между задачами обобщения и классификации и задачами, решаемыми в рамках теории вероятностей и математической статистики. В математической статистике ставятся и решаются задачи вывода новых знаний на основании анализа совокупности наблюдений, при этом устанавливаются частотные закономерности появления событий: определяются общий вид и параметры функций распределения вероятностей событий по данным наблюдений, делаются выводы о степени статистической зависимости наблюдаемых случайных величин, проверяются гипотезы о характеристиках случайного события. Действительно, в задаче формализации и вывода знаний о реальном мире нельзя не учитывать наличия статистических закономерностей в его проявлениях. Общая же задача формирования гипотез по данным наблюдений не ограничивается установлением статистических закономерностей. Так, разработаны формально-логические модели выдвижения гипотез [6], которые используются в теории искусственного интеллекта.
С точки зрения способа представления знаний и допущений на общий вид объектов наблюдений, методы обобщения делятся на методы обобщения по признакам и структурно-логические (или концептуальные) методы [2]. В первом случае объекты представляются в виде совокупности значений косвенных признаков. Методы обобщения и распознавания по признакам различаются для качественных (номинальных или порядковых) и количественных (измеримых) значений признаков. Структурно-логические методы, в отличие от признаковых, предназначены для решения задачи обобщения на множестве объектов, имеющих внутреннюю логическую структуру (последовательности событий, иерархически организованные сети, характеризуемые как признаками и свойствами объектов – элементов сети, так и отношениями между ними). В формально-логических системах, использующих структурно-логические методы обобщения, вывод общих следствий из данных фактов называют индуктивным выводом. Сформулированы основные вопросы, на которые должны давать ответы индуктивные логики и методы выдвижения гипотез: