Смекни!
smekni.com

Технологія Frame Relay (стр. 2 из 4)

Служба комутації пакетів Frame Relay у цей час широко поширена по всьому світі. Технологія ретрансляції кадрів Frame Relay виникла завдяки потребі сполучення локальних мереж каналами глобальних мереж, поєднання територіально розрізнених локальних мереж корпорації в єдину швидкісну корпоративну мережу, а також впровадженням новітніх досягненнь в технології передачі глобальних мереж. Більш ранні протоколи WAN, такі як Х.25, були розроблені в той час, коли переважали аналогові системи передачі даних і мідні носії. Ці канали передачі даних не надійні в порівнянні з волоконно-оптичним носієм і цифровою передачею даних. У таких каналах передачі даних протоколи канального рівня можуть передувати потребуючи значних тимчасових витрат алгоритма виправлення помилок. Отже, можливі більш продуктивні й ефективні способи для цілісності інформації. Саме ця мета переслідувалася при розробці Frame Relay. Frame Relay можна розглядати і як спрощений варіант Х.25 для надійних мереж та високих швидкостей передачі даних. Головна відмінність цієї мережі від Х.25 - це те, що корекцію помилок виконують не проміжні, а кінцеві вузли.

Вузол мережі Frame Relay виконує такі дві головні функції:

- перевіряє цілісність кадру (якщо кадр спотворений, його відкидають);

- перевіряє правильність адреси (якщо адреса не відома, кадр відкидають);

Завдяки зменшенню часу на опрацювання у проміжних вузлах затримка у вузлі Frame Relay становить близько 3 мс, тоді як аналогічне значення для Х.25 - 50 мс. Швидкість передавання Frame Relay набуває різних значень - від 56 Кб/с до 1.544 Мб/с залежно від пропускної здатності та кількості задіяних каналів. Технологія Frame Relay не накладає обмежень на максимальну швидкість передавання.

Frame Relay забезпечує можливість передачі даних з комутацією пакетів через інтерфейс між пристроями користувача DTE (наприклад, маршрутизаторами, мостами) і встаткуванням мережі DCE (перемикаючими вузлами). [3,4].

Стандарти Frame Relay визначають два типи віртуальних каналів:

1. PVC, (Permanent Virtual Circuit) постійний віртуальний канал, що створюється між двома обэктами і існує протягом тривалого часу, навіть під час відсутності даних для передачі.

2. SVC (Switched Virtual Circuit) - віртуальний канал, що комутує, створюється між двома обэктакми безпосередньо перед передачею даних і розривається після закінчення сеансу зв'язку.

Принцип технології передачі даних:

Ідея, яка лежить в основі FrameRelay заключається в тому, щоб надати користувачам можливість обмінюватися інформацією між двома DTE пристроями через DCE. На рисунку зображено все необхідне для того, щоб два DTE – пристроя могли встановити зв’язок один з одним.

Ось як це все проходить:

1. Мережеве обладнання користувача відправляє деякий кадр в локальну мережу. В заголовку цього кадру вказується апаратний адрес маршрутизатора (шлюз по замовчуванню).

2. Маршрутизатор отримує цей кадр, вилучає з нього пакет після чого відкидає кадр. Після відкидання кадру він знаходить IP-адрес отримувача, який знаходиться в середині пакету і по таблиці маршрутизації намагається визначити, яким чином можна добратися до мережі отримувача.

3. Потім маршрутизатор відправляє данні через інтерфейс, який як йому здається дозволить знайти видалену мережу. Якщо ж маршрутизатор не в змозі знайти потрібну йому мережу в своїй таблиці маршрутизації, то він відкидає весь пакет. По скільки в даному випадку це буде послідовний інтерфейс, інкапсульований для FrameRelay, то маршрутизатор відправить пакет в адрес мережі FrameRelay у вигляді інкапсульованого кадра для FrameRelay. Він добавить в нього DLCI-номер, який відповідає даному послідовному інтерфейсу. DLCI визначає номер віртуального каналу PVCабо SVC, який веде до маршрутизатора і комутатора, який входить в склад мережі FrameRelay.

4. Пристрій обслуговування каналу - (ChannelServiceUnit, CSU) та пристрій обслуговування даних - (DataServiceUnit, DSU) отримують цифровий сигнал і перетворюють його в ту систему цифрових сигналів, яка буде зрозуміла комутатору PSE (PacketSwitchingExchange – обмін комутуючих пакетів). PSE отримує цифровий сигнал і витягує отримані по лінії зв’язку одиниці і нулі.

CSU/DSU зв’язаний з демаркаційною (demark) лінією, встановленою провайдером мережевих послуг. Демаркаційною лінією зазвичай служить проста розетка RJ-48S, яка встановлюється неподалік від маршрутизатора CSU/DSU

5. Демаркаційна лінія зазвичай представляє собою виту пару, яка з’єднується з локальною петлею. Локальна петля з’єднується з найближчим центральним офісом (CentralOffice).

6. СО отримує кадри і пересилає їх через «хмару» FrameRelay отримувачу. Ця «хмара» може складатися з десятків комутуючих офісів. СО намагається визначити IP-адресу і DLCI-номер . Зазвичай вдається визначити DLCI-номер видаленого пристрою із відповідної таблиці IP і DLCI. ДляFrameRelay такі таблиці створюються статично провайдером послуг, але можуть створюватися маршрутизатором і динамічно за допомогою IARP (InverseAddressResolutionProtocol – протокол динамічного зворотного перетворення адрес).

7. Після того, як кадр досягає комутуючого офісу він одразу посилається в локальну петлю. Кадр проходить демаркаційну лінію і CSU/DSU. Маршрутизатор в свою чергу витягує з кадру пакет, або дейтаграмму і вміщує цей пакет в новий кадр – кадр локальної мережі, який і доставляється отримувачу. Рухаючись по локальній мережі кадир буде мати в своєму заголовку кінцевий апаратний адрес відправника. Цей адрес вилучається з ARP-кеша. [5].


РОЗДІЛ 2. ОПИС ТЕХНОЛОГІЇ FRAME RELAY

2.1 Структура мережі Frame Relay

Протокол ретрансляції фреймів забезпечує пакетно-комутуючий обмін даними, який проходить по інтерфейсу між пристроями користувача (такими як маршрутизатори, мости і хости) і мережевим обладнанням (такими як комутуючі вузли).

Як було сказано раніше, пристрої користувача називають (DataTerminalEquipment, DTE ), а мережеве обладнання, взаємодіюче з DTE, називається завершеним обладнанням канала даних (DataCircuit-TerminatingEquipment, DCE). [6].

2.2 Технологія передачі даних з використанням VC

FR допускає змінну довжину кадру - від кількох байтів до 2000 байт. Гнучка зміна довжини кадру дає змогу налаштовуватися до зміни навантаження. З іншого боку, вона призводить до змінної затримки у передаванні інформації та неможливості роботи з ізохронними потоками (відео та аудіо інформація).

Frame Relay використовує сталі віртуальні канали (Permanent Virtual Chennel, РVС). У випадку розірвання зв'язку Frame Relay автоматично перемаршрутизовує сполучення. РVС автоматично виділяються під час приєднання до мережі.Перед початком сполучення користувачу забезпечують:

- Гарантовану швидкість передавання інформації (Commited Information Rate, СІR) – швидкість з якою мережа буде передавати дані користувача.

- Гарантовану величину пульсації (CommittedBurstSize, Вс) – максимальна кількість байтів, яке мережа буде передавати від даного користувача за інтервал часу Т, називаємий часом пульсації, дотримуючись гарантованої швидкості передавання СІR.

- Допоміжна величина пульсації (ExcessBurstSize, Ве) – максимальна кількість байтів, які мережа буде пробувати передавати з зверх встановленого значення Вс за інтервал часу Т.

Якщо приведені вище величини відомі, то час Т визначається наступною формулою:

T=Bc/CIR

Основним параметром по якому абонент і мережа заключає згоду при з’єднанні віртуального канала, являється гарантована швидкість передачі даних. Для постійних віртуальних каналів ця згода являється частиною контракту на користування послугами мережі. При встановленні з’єднання комутуючого віртуального канала (SwitchingVirtual Chennel, SVC) згода про якість обслуговування заключається автоматично. Потрібні параметри передаються в пакеті запиту на встановлення з’єднання.

Швидкість передачі даних вимірюється на контрольному інтервалі часу Т, на якому провіряються умови згоди. Тобто користувач не повинен в цьому інтервалі передавати в мережу дані з середньою швидкістю більшою за СІR . Якщо ж користувач порушує умови згоди, то мережа не гарантує доставку кадра і помічає цей кадр признаком готовності до видалення – DE=1. Однак такі кадри помічені такою ознакою видаляються із мережі в тому випадку, коли комутатори мережі перенавантажені. Якщо перенавантаження немає, то кадри з признаком DE=1 доставляються адресату.

Така поведінка мережі відповідає випадку, коли загальна кількість даних переданих користувачем в мережу за період Т, не перевищує значення Вс+Ве. Якщо ж цей поріг перевищенний то кадр не помічається ознакою DE, а не гайно видаляється.

Рисунок паказує випадок, коли за інтервал часу Т в мережу по віртуальному каналу поступило 5 кадрів. Середня швидкість надходження даних в мережу на цьому інтервалі складає R біт/с і вона виявилась більша за СІR. Кадри F1, F2 і F3 доставили в мережу дані, загальна сума, яких не перевищила порогу Вс, тому ці кадри пішли далі з ознакою DE=0. Дані кадра F4, добавлені до даних кадрів F1, F2 і F3 уже перевищили поріг Вс, але ще не перевищили порогу Вс+Ве, тому кадр F4 також пішов далі, але уже з ознакою DE=1. Дані кадра F5 добавлені до попередніх кадрів, перевищели поріг Вс+Ве, тому цей кадр був видалений із мережі.[1].

2.3 Основні принципи роботи Frame Relay

2.3.1 VC, ідентифікація VC

Кожне з’єднання PVC і SVC ідентифікується за допомогою ідентифікатора каналу передачі даних (Data-LinkControlIdentifier, DLCI). DLCI схожий на телефонний номер. Різниця полягає в тому, що сфера його дії обмежується тільки локальною ділянкою мережі. Завдяки цьому різні маршрутизатори в мережі можуть повторно використовувати той самий DLCI, що дозволяє мережі підтримувати велику кількість віртуальних каналів. Таблиці перехресних з’єднань (cross-connecttables) поширювані між всіма комутаторами FrameRelay в мережі, встановлюються між вхідними і вихідними DLCI.