1. Загальна характеристика флеш-пам’яті як засобу зберігання інформації
Флеш - пам’ять - особливий вид незалежної напівпровідникової пам'яті.
- Незалежна – пам’ять, яка не потребує додаткової енергії для зберігання даних (енергія потрібна лише для запису).
- пам'ять, яку можна перезаписати - допускає зміну (перезапис) даних, що зберігаються в ній.
- Напівпровідникова (твердотільна) - що не містить механічно рухомих частин (як звичні жорсткі диски або CD), побудована на основі інтегральних мікросхем (IC-Chip).
На відміну від багатьох інших типів напівпровідникової пам'яті, комірка флеш - пам’яті не містить конденсаторів – типова комірка флеш - пам’яті складається усього-на-всього з одного транзистора особливої архітектури. Комірка флеш - пам’яті чудово змінює масштаб, що досягається не лише завдяки успіхам в мініатюризації розмірів транзисторів, але і завдяки конструктивним знахідкам, що дозволяють в одної комірці флеш - пам’яті зберігати декілька біт інформації.
Флеш - пам’ять історично походить від ROM (Read Only Memory) пам'яті, і функціонує подібно RAM (Random Access Memory). Дані флеш зберігає в елементах пам'яті, схожих на комірки в DRAM. На відміну від DRAM, при відключенні живлення дані з флеш - пам’яті не пропадають.
Заміни пам'яті SRAM і DRAM флэш-пам'яттю не відбувається через дві особливості флеш - пам’яті : флеш працює суттєво повільніше і має обмеження по кількості циклів перезапису (від 10.000 до 1.000.000 для різних типів).
Надійність/довговічність: інформація, записана на флеш - пам’ять, може зберігатися дуже тривалий час (від 20 до 100 років), і здатна витримувати значні механічні навантаження (в 5-10 разів перевищуючі гранично допустимі для звичайних жорстких дисків).
Основна перевага флеш - пам’яті перед жорсткими дисками і носіями CD-ROM полягає у тому, що флеш - пам’ять споживає значно (приблизно у 10-20 і більше разів) менше енергії під час роботи. У пристроях CD-ROM, жорстких дисках, касетах і інших механічних носіях інформації, велика частина енергії йде на приведення в рух механіки цих пристроїв. Крім того, флеш - пам’ять більш компактна ніж інші механічні носії.
Завдяки низькому енергоспоживанню, компактності, довговічності і відносно високій швидкодії, флеш - пам’ять ідеально підходить для використовування як накопичувач в таких портативних пристроях, як: цифрові фото- і відео камери, стільникові телефони, портативні комп'ютери, MP3-плеери, цифрові диктофони, і т.п.
У даному конспекті розглядається лише "чиста" флеш - пам’ять з числом циклів читання/запису більше 10000. Окрім "чистого" flash існують OTP (One Time Programmable) - пам'ять з єдиним циклом запису, і MTP (Multiple Time Programmable) - до 10000 циклів. Окрім кількості допустимих циклів запису/стирання принципової різниці між MTP і Flash немає. OTP суттєво відрізняється від цих типів архітектурно.
2. ROM і Flash
Флеш - пам’ять історично відбулася від напівпровідникового ROM, проте ROM-пам'яттю не є, а всього лише має схожу на ROM організацію. Безліч джерел (як вітчизняних, так і зарубіжних) часто помилково відносять флеш - пам’ять до ROM. Флеш ніяк не може бути ROM хоча б тому, що ROM (Read Only Memory) переводиться як "пам'ять лише для читання". Ні про яку спроможність перезапису в ROM мові бути не може!
Серед напівпровідникової пам'яті лише два типи відносяться до "чистого" ROM - це Mask-ROM і PROM. На відміну від них EPROM, EEPROM і Flash відносяться до класу незалежної пам'яті (англійський еквівалент - nonvolatile read-write memory або NVRWM).
Різні джерела по-різному розшифровують абревіатуру EPROM - як Erasable Programmable ROM або як Electrically Programmable ROM (стирані програмовані ПЗП або електричне програмовані ПЗП). У EPROM перед записом необхідно провести стирання (відповідно з'явилася Спроможність перезаписувати вміст пам'яті). Стирання комірок EPROM виконується відразу для всієї мікросхеми за допомогою опромінювання чипа ультрафіолетовим або рентгенівським промінням протягом декількох хвилин. Мікросхеми, стирання яких проводиться шляхом опромінювання ультрафіолетом, були розроблені Intel в 1971 році, і носять назву UV-EPROM (приставка UV (Ultraviolet) - ультрафіолет). Вони містять віконця з кварцового скла, які після закінчення процесу стирання заклеюють.
EPROM від Intel була заснована на МОП-транзисторах з лавинною інжекцією заряду (FAMOS - Floating Gate Avalanche injection Metal Oxide Semiconductor, російський еквівалент - ЛІЗМОП). У першому наближенні такий транзистор є конденсатором з дуже малим витоком заряду. Пізніше, в 1973 році, компанія Toshiba розробила комірки на основі SAMOS (Stacked gate Avalanche injection MOS, за іншою версією - Silicon and Aluminum MOS) для EPROM пам'яті, а в 1977 році Intel розробила свій варіант SAMOS.
У EPROM стирання приводить всі біти області, що стирається в один стан (звично у всі одиниці, рідше - у всі нулі). Запис на EPROM, як і в PROM, також здійснюється на програматорах (проте відмінних від програматорів для PROM). В даний час EPROM практично повністю витиснена з ринку EEPROM і Flash.
Переваги: Спроможність перезаписувати вміст мікросхеми
Недоліки:
1.Невелика кількість циклів перезапису.
2.Неможливість модифікації частини даних, що зберігаються.
3.Висока вірогідність "не стерти" (що зрештою приведе до збоїв) або перетримати мікросхему під УФ-світлом (т.з. overerase - ефект надмірного видалення, "перепал"), що може зменшити термін служби мікросхеми і навіть привести до її повної непридатності.
EEPROM (E?PROM або Electronically EPROM) - ППЗУ були розроблені в 1979 році в тій же Intel. У 1983 році вийшли перші 16Кбіт зразків, виготовлених на основі FLOTOX-транзисторів (Floating Gate Tunnel-OXide - "плаваючий" затвор з туннелюванням в оксиді). Головною відмітною особливістю EEPROM (в т.ч. Flash) від раніше розглянутих нами типів незалежної пам'яті є спроможність перепрограмування при підключенні до стандартної системної шини мікропроцесорного пристрою. У EEPROM з'явилася спроможність виробляти стирання окремої комірки за допомогою електричного струму. Для EEPROM стирання кожної комірки виконується автоматично при записі в неї нової інформації, тобто можна змінити дані в будь-якїй комірці, не зачіпаючи інші. Процедура стирання звичайно суттєво довша процедури запису.
Переваги EEPROM в порівнянні з EPROM:
1. Збільшений ресурс роботи.
2. Простіша в обігу.
Недолік: Висока вартість
Винахід флеш - пам’яті часто незаслужено приписують Intel, називаючи при цьому 1988 рік. Насправді пам'ять вперше була розроблена компанією Toshiba в 1984 році, і вже наступного року було почате виробництво 256Кбіт мікросхем flash-пам'яті в промислових масштабах. У 1988 році Intel розробила власний варіант флеш - пам’яті .
У флеш - пам’яті використовується дещо відмінний від EEPROM тип комірки-транзистора. Технологічно флеш - пам’ять споріднена як EPROM, так і EEPROM. Основна відмінність флеш - пам’яті від EEPROM полягає у тому, що стирання вмісту комірок виконується або для всієї мікросхеми, або для певного блоку (кластера, кадру або сторінки). Звичний розмір такого блоку складає 256 або 512 Байт, проте в деяких видах флеш - пам’яті об'єм блоку може досягати 256КБ. Слід помітити, що існують мікросхеми, що дозволяють працювати з блоками різних розмірів (для оптимізації швидкодії). Стирати можна як блок, так і вміст всієї мікросхеми відразу. Таким чином, в загальному випадку, для того, щоб змінити один байт, спочатку в буфер прочитується весь блок, де міститься належний зміні байт, стирається вміст блоку, змінюється значення байта в буфері, після чого проводиться запис зміненого в буфері блоку. Така схема суттєво знижує швидкість запису невеликих об'ємів даних в довільні області пам'яті, проте значно збільшує швидкодію при послідовному записі даних великими порціями.
Переваги флеш - пам’яті в порівнянні з EEPROM:
- Вища швидкість запису при послідовному доступі за рахунок того, що стирання інформації у флеш проводиться блоками.
- Собівартість виробництва флеш - пам’яті нижча за рахунок простішої організації.
Недолік: Повільний запис в довільні ділянки пам'яті.
Комірки флеш - пам’яті бувають як на одному, так і на двох транзисторах.У простому випадку кожна комірка зберігає один біт інформації і складається з одного польового транзистора із спеціальною електрично ізольованою областю ("плаваючим" затвором - floating gate), здатною зберігати заряд багато років. Наявність або відсутність заряду кодує один біт інформації.
Рисунок 1 – Внутрішня організація флеш-пам'яті
При запису заряд поміщається на плаваючий затвор одним з двох способів (залежить від типу комірці): методом інжекції "гарячих" електронів або методом туннелювання електронів. Стирання вмісту комірці (зняття заряду з "плаваючого" затвора) проводиться методом туннелювання.
Як правило, наявність заряду на транзисторі розуміється як логічний "0", а його відсутність - як логічна "1".
Сучасна флеш - пам’ять звичайно виготовляється по 0,13- і 0,18-мікронному процесу.
Загальний принцип роботи комірки флеш - пам'яті.
Розглянемо просту комірку флеш - пам’яті на одному n-p-n транзисторі. Комірки подібного типу найчастіше застосовувалися в flash-пам'яті з NOR архітектурою, а також в мікросхемах EPROM.
Поведінка транзистора залежить від кількості електронів на "плаваючому" затворі. "Плаваючий" затвор виконує ту ж роль, що і конденсатор в DRAM, тобто зберігає запрограмоване значення.
Переміщення заряду на "плаваючий" затвор в такій комірці проводиться методом інжекції "гарячих" електронів (CHE - channel hot electrons), а зняття заряду здійснюється методом квантомеханічного туннелювання Фаулера-Нордхейма (Fowler-Nordheim [FN]).
Таблиця 1 – Принцип дії пам'яті
Ефект тунелювання - один з ефектів, що використовують хвильові властивості електрона. Сам ефект полягає в подоланні електроном потенційного бар'єру малої "товщини". Для наочності уявимо собі структуру, що складається з двох провідних областей, розділених тонким шаром діелектрика (збіднена область). Подолати цей шар звичайним способом електрон не може - не вистачає енергії. Але при створенні певних умов (відповідна напруга і т.п.) електрон проскакує шар діелектрика (туннелює крізь нього), створюючи струм.