Смекни!
smekni.com

Формирование математической модели корпуса теплохода-площадки в программе FastShip6 (стр. 5 из 8)

Неотъемлемой частью всего вышесказанного является предоставление читателю выбора “рабочего инструмента” для построения кривых и поверхностей. Имеющееся в наличии небольшое количество программного обеспечения по морской технике использует и те и другие виды сплайнов. FastShip в качестве инструмента для создания поверхностей выбрал В-сплайны с контрольной сетью с предопределёнными или интерактивно определяющимися граничными условиями. Некоторые программы, использующие В-сплайны сперва конструируют поперечные сечения, а затем сглаживают их в продольном направлении, проводя интерполирующую функцию через контрольные точки сечений. Очевидно, небольшие изменения в поперечных сечениях могут отразиться в колебательном отношении на всей длине спроектированного судна. При этом подходе небольшие изменения никогда не будут локальными.

3.7 Дополнительный контроль

Теперь обратим внимание на проблему дополнительного контроля над В-сплайн кривой или поверхностью.При использовании FastShip часто случается, что пользователь нуждается в дополнительном контроле над формой поверхности. Очевидным средством для дополнительного контроля является добавление вершин в контрольный многоугольник. Как мы уже знаем, этим подразумевается добавление значений к узловому вектору. В FastShip используются два различных подхода для дополнительного контроля над поверхностью. Первый – это функция insert-net, а второй-функция insert-knot . Рассмотрим вкратце каждый из них.


Рис. 3.7. Дополнительный контроль посредством функции insert – net.

Рис.3.7. показывает использование функции insert-net для дополнительного контроля. Рассмотрим кубический В-сплайн, состoящий из четырёх вершин определяющего многоугольника(единственный интервал) и открытый стандартный узловой вектор. Мы хотим вставить точку в определяющую сеть посередине кривой, чтобы лучше контролировать поверхность в данном месте.

Рис.3.8. Дополнительный контроль с помощью функции insert – knot.

Функция insert-net сохраняет все существующие вершины многоугольника на своих позициях и вставляет определённым образом новую вершину в многоугольник, а также добавляет значение узла в узловой вектор, чтобы сохранить стандартность узлового вектора. В данном примере новая вершина была вставлена посередине между второй и третьей вершиной, и было добавлено новое значение узла 0.5. (Заметьте, что в FastShip новый узловой вектор будет иметь вид {0,0,0,0,1,2,2,2,2} т.к. FastShip поддерживает интегральные значения узлов). Теперь, если мы будем использовать уже изученные приёмы для вычисления значения кривой с дополнительным контролем, то обнаружим, что она слегка отличается от исходной кривой. Но мы же дополнительно проконтролировали поверхность. Секрет здесь в том, что команда insert-net не сохраняет форму кривой, но сохраняет стандартность узлового вектора.

Теперь обратимся к рис.3.8. для рассмотрения операции insert-knot дополнительного контроля. Начнём всё с того же В-сплайна, показанного в нижней части рисунка. Пользователь определяет в каком месте он хочет вставить узел, в данном примере при значении параметра 0.75. Узловой вектор соответственно изменяется и добавляется новая вершина. Однако в этом случае некоторые вершины многоугольника перемещаются со своих первоначальных позиций. Используется приём, описанный ранее, когда вершины определяются осреднением узлового вектора и новый многоугольник создаётcя, как показано справа на рисунке. Секрет здесь в том, что insert-knot сохраняет форму кривой, но не сохраняет стандартности узлового вектора. Фактически за исключением отдельных случаев единственного интервала узлового вектора невозможно вставить узел в стандартный многоинтервальный узловой вектор, при этом сохранить его стандартность.

3.8 Что значит “рациональный”?

До сих пор мы рассмотрели все части, которые составляют аббревиатуру NURBS за исключением одного “рациональность”. В-сплайн является рациональным, если каждой вершине его определяющего многоугольника соответствует своё значение веса точки. Вес точки можно рассматривать как силу влияния данной точки на кривую. Рассмотрим рис.3.9.

Рис.3.9. Рациональность В-сплайнов

Здесь мы пытаемся определить дугу круга в 900 используя квадратичный В-сплайн, заданный тремя вершинами многоугольника. Т.к. мы знаем что кривая приближается на своих концах к касательной, проведённой к конечным точкам наклонных, то для того, чтобы получить дугу 900 обе наклонных многоугольника должны быть перпендикулярны. Подгоняя многоугольник, как показано на рисунке, но оставляя веса точек равными 1, получается верхняя кривая, показанная на рисунке, очевидно, не круглой формы. Первым побуждением было бы сдвинуть вниз вершину В1 пока не получится фигура более круглой формы. Хотя этого могло быть и достаточно для приближения к круглой форме, это не может быть правильно по двум причинам. Первая, двигать вниз В1 означает, что две наклонные больше не будут перпендикулярными, т.е. касательные к конечным точкам кривой не могут быть перпендикулярными. Второе, и, возможно, более важное, ранее мы показали, что двигая вершину контрольной сети, все точки кривой двигаются в том же направлении, что и вершина, но на разные расстояния. Здесь же нам нужно, чтобы точки двигались от В1 в радиальном направлении. Это достигается изменением веса вершины В1. В данном примере вес точки уменьшили так, чтобы получился круг. Существует точное распределение весов определяющего многоугольника, которое позволяет получить круг. Хотя в определённых случаях это распределение легко вычисляется, оно не является общим случаем. Для большинства моделей, выполненных в FastShip, достаточным является приближённо построить круговую область, используя вершины со стандартными весами. Курс передового обучения FastShip предоставляет специальные примеры того, как использовать В-сплайны для получения круговых областей.

3.9 От кривых к поверхностям

Рис.3.10. От кривых к поверхностям.

Всё, что уже говорилось о NURBS кривых, справедливо и для NURBS поверхностей. Также существует определяющий многоугольник, но теперь он распространяется на два напраления и называется контрольной сеткой. Теперь мы будем говорить о пространстве двух параметров u-v. Большинство свойств, рассмотренных ранее, подходят и для пространства двух параметров. Кроме того, для поверхностей будет иметь место дополнительное свойство: в любой точке поверхности пересечение двух касательных к поверхности даёт внешнюю нормаль. И, наконец, как показано на рис.3.10, поверхность меньше повторяет форму контрольной сетки, чем кривая. Это является следствием того, что FastShip работает с тензорными поверхностями. Поэтому в случае кривой сдвиг вершины определяющего многоугольника на одну единицу вверх вызывает сдвиг самой кривой на полединицы вверх, а в случае поверхности сдвиг вершины сетки можно рассматривать как сдвиг поверхности на полединицы в каждом направлении, т.е. в итоге на четверть вверх.

3.10 Граничные условия и сломы

зеркальное г.у. конечное г.у. натурального сплайна

Рис.3.11. Граничные условия FastShip

Известно, что NURBS кривая при подходе к своим конечным точкам приближается к касательной, проведённой в этих точках. Представим плазовщика, изображающего окончания ватерлиний гибкой рейкой. Если плазовщик расставит точки по рейке так, что последняя точка окажется на самой кромке ватерлинии, а рейка может принимать любую форму, то получится визуализированное конечное условие натурального сплайна(см. рис.3.11). Однако часто случается, что окончания ватерлиний проходят перпендикулярно диаметральной плоскости, например, эллиптические окончания ватерлиний. Плазовщик будет вынужден чрезмерно изогнуть линейку или воспользоваться корабельным лекалом. Пользуясь В-сплайном данная проблема легко решается, установив наклонную определяющего многоугольника перпендикулярно диаметральной плоскости. Это называется зеркальным граничным условием. Отсюда видно, насколько однозначно В-сплайн определяет такое конечное условие.

Рассмотрим сломы кривых и поверхностей. Мы уже знаем, как можно использовать многозначные вершины или многозначные узлы, чтобы заставить В-сплайн проходить через заданную точку. Подразумевается, чтобы получить слом кривой нужно использовать любой приём, который сделал бы наклонные в этой точке неколлинеарными. Тогда возникает вопрос, что лучше использовать многозначные вершины или многозначные узлы? По этому поводу можно сделать два замечания. Первое, многозначные узлы считаются более предпочтительным вариантом, т.к. они хорошо определяются в рамках NURBS математики и не требуют дополнительной обработки. Знайте, что некоторые приложения, использующие в своей работе математику NURBS, не работают с многозначными вершинами, поэтому если вы планируете переместить свою работу в другое приложение, то возможно столкнетесь с проблемой дополнительной доработки. Второе замечание заключается в следующем: многозначный узел лучше использовать, если слом имеет большую длину, как, например, скуловой слом, а многозначные вершины лучше на локальных сломах, например, транец или палубный слом.