Смекни!
smekni.com

Формирование математической модели корпуса теплохода-площадки в программе FastShip6 (стр. 6 из 8)

3.11 Итоги главы. Основные свойства NURBS

Подводя итоги, перечислим основные моменты, которые нужно было усвоить в этой главе:

· В общем случае поверхность повторяет форму определяющей контрольной сети. Фактически, контрольную сеть можно рассматривать, как увеличенное изображение поверхности. Т.о. если мы имеем перегибы в определяющей сети, то в поверхности тоже будут перегибы. Забегая вперёд, если мы хотим получить гладкую поверхность, то мы должны иметь гладкую сеть.

· Влияние любой вершины в определяющей сети ограничивается расстоянием плюс или минус порядок поверхности, делённый на два в любом направлении.

· Поверхность инвариантна по отношению к аффинному преобразованию. Аффинное преобразование- преобразование, сохраняющее отношения длин масштабов и углов. Другими словами, выполнение аффинного преобразования не меняет физической сущности поверхности.

· Непрерывность поверхности оценивается по числу равному порядок поверхности минус 2 в каждом параметрическом направлении. Фактически, если нет многозначных вершин или многозначных узлов, то непрерывность поверхности на данном интервале обеспечена.

· Каждая многозначная вершина или многозначный узел снижает непрерывность поверхности на интервале на один порядок.Т.о. имея многозначную вершину или многозначный узел равный степени поверхности в каком-либо направлении достигается слом поверхности.

· В-сплайн поверхность совпадает с вершинами определяющей сети в конечных точках поверхности; кроме того, поверхность, подходя к конечным точкам, приближается к касательным, восстановленным в конечных точках. Чтобы точно изобразить круглые или конические поверхности необходимо назначить вершине вес. Это можно сделать и по-другому, а именно, добавляя строки и столбцы вершин сети.

· В-сплайн поверхность можно всегда представить эквивалентной поверхностью большего порядка, но нельзя представить поверхностью меньшего порядка.

4. ПОСТРОЕНИЕ ТЕОРЕТИЧЕСКОЙ ПОВЕРХНОСТИ СУДНА

4.1 Построение плоского листа поверхности

Приём, который мы будем использовать в работе, состоит в том, что сперва мы построим боковую проекцию судна в плоском виде, а затем будем растягивать её в ширину.

Построение поверхности начнём "с пустого места" (startfromscratch). Построим плоский лист, придадим ему нужную трёхмерную форму, а затем сверху наставим ещё две поверхности: бак и ют.

Зададим единицы измерения для работы в FastShip. Для этого:

Выберем меню "File"

Выберем пункт "Preferences"

Перейдём на вкладку "Units"

Нажмём клавишу "Setmetric", чтобы работать в метрической системе измерения

FastShip использует Х как абсциссу, Y – ординату, Z – аппликату. По умолчанию, направление Х принимается справа налево, направление Y – от ДП к правому борту, и Z – сверху вниз.

Рис.4.1 Окно FastShip6


Изменим систему координат FastShip, так, чтобы ось Z была направлена для создания плоского листа поверхности вертикально вверх. Для этого:

Нажмём "File"

Выберем "Preferences"

Установим значок рядом с Pozitive Z up

Нажмём ОК

Получим плоский лист заданных размеров, для этого

выберем в падающем меню "Parts"

нажмём пункт "Create".

На экране появится окно, показанное на рис.4.1. Заполним его так, как показано на этом рисунке.

Рис.4.2. Первоначальный плоский лист поверхности (здесь и далее цвет фона экрана и поверхности изменен).

В графе "PartType" выберем пункт "Plate", т.к. мы хотим иметь плоский лист. В графу "Name" впишем hull. При дальнейшей работе эта часть поверхности в дереве деталей будет обозначаться именно так. Что касается степени поверхности, то мы хотим, чтобы наша поверхность имела кривизну в обоих направлениях, поэтому в графе "Degree" оставим цифры 3, т.е. поверхность будет третьей степени; квадратичными поверхностями труднее манипулировать, а поверхности 4ой степени не дают больших преимуществ. В "Intervals" поставим цифры 3; начнём с поверхности, имеющей 3 интервала, впоследствии количество интервалов можно будет изменить. Лист будет располагаться в плоскости XOZ при Y=0, т.е. в "Orientation" выберем именно эту плоскость. В графе "Size" выберем соответствующие размеры разрабатываемой части судна. Центр тяжести листа будет располагаться при X=20.1 Y=0 Z=1.65, т.к. начало отсчёта мы хотим совместить с нулевым шпангоутом.

Нажимая клавишу OK, получим на экране плоский лист поверхности.

При изображении поверхности можно пользоваться несколькими видовыми экранами (см. рис.3.3.). На экране можно поместить одновременно один, два и четыре видовых экрана. Для этого нужно воспользоваться соответственно панелями

Рис.4.3. Использование нескольких видовых экранов для изображения поверхности .

При этом любой видовой экран можно сделать активным и производить редактирование непосредственно в нём. Чтобы сделать видовой экран активным нужно щёлкнуть мышкой на цифре, размещённой в верхнем правом углу экрана, после чего цифра станет яркой, это значит, что видовой экран активен.

Используем для изображения листа четыре видовых экрана

(см. рис.4.3.). На активном видовом экране лист повёрнут в пространстве. Для вращения и поворота

поверхности в пространстве в FastShip предусмотрена панель, при этом нужно нажать на эту панель и удерживая её нажатой, поводить мышкой на экране.

Чтобы посмотреть на контрольную сетку нужно нажать клавишу

Чертёж примет вид, показанный на рис.4.4. Чтобы вернуться обратно к поверхности нужно воспользоваться клавишей

Есть альтернативный вариант одновременного просмотра поверхности и контрольной сетки с помощью клавиши

На рис.4.4. изображено два вида поверхности: верхнюю часть экрана занимает поверхность, а нижнюю – контрольная сетка этой поверхности. Сплошные вертикальные и горизонтальные линии контрольной сетки представляют собой границы интервалов (на рис.4.1. мы разбили поверхность на три интервала по длине и три – по ширине). Сплошным вертикальным линиям контрольной сетки соответствуют сплошные линии на поверхности. Внутри каждого интервала поверхности линий не изображено. Чтобы увидеть их сделаем следующее: в меню "File" выберем пункт "Preferences" и откроем вкладку "Graрhics". Заполним строки, как показано на рис.4.5. Нажав "ОК", получим изображение, как на рис.4.6.

Рис.4.4. Контрольная сетка поверхности (на активном экране)


Рис.4.5. Окно "Preferences".

Создастся новая поверхность, FastShip пересчитает поверхность и высветит 3 точки на интервал, как в направлении столбцов, так и в направлении строк. Число точек, вычисляемых поверхностью (плотность поверхности), рассчитывается как количество интервалов поверхности, делённое на интервал контрольной сетки; интервалы могут быть различны по строкам и по столбцам. По умолчанию FastShip рассчитывает 3x3 дополнительных интервала (3-по строкам и 3-по столбцам). Это значит, что для каждого интервала контрольной сетки FastShip высчитывает 3 интервала поверхности.

Рис.4.6. Пересчитанная поверхность (3 точки на интервал)

Чтобы понять назначение плотности поверхности, достаточно привести такой пример: если строить круг отрезками, имея малое количество данных точек (малую плотность), полученная фигура будет слабо напоминать круг. Но не нужно бросаться в крайность, т.е. назначать слишком большую плотность поверхности (сотни дополнительных точек), т.к. это чрезмерно захламляет экран и замедляет работу программы. Оптимальным вариантом является 4x4, или чуть выше. Пунктирные линии (линии контроля кривизны) всегда располагаются у внутреннего края поверхности и существуют для контроля поверхности у четырёх кромок.

Основной вид деятельности, которым приходится заниматься в FastShip, это передвижение точек контрольной сетки. Из составленной контрольной сетки высчитывается поверхность, а из поверхности высчитываются сечения (шпангоуты, баттоксы, ватерлинии и т.д.). Позтому как только вы поймёте, как передвигать точки, вы овладеете FastShip.