Міністерство освіти і науки України
Житомирський державний технологічний університет
Кафедра ТМ та КТС
Група ЗІМ 03-1т
Курсова робота
з інформатики
Житомир
Зміст
Завдання № 1. – Чисельне інтегрування. Формула трапецій та формула Сімпсона
Завдання № 1
Чисельне інтегрування. Формула трапецій та формула Сімпсона
Розрахувати за допомогою формул трапецій та Сімпсона значення інтегралу від функції y=f(x)= a0+a1x+a2x2+a3x3+a 4x4+a5x5 з точністю до п’ятого знака. Визначити похибки розрахунків для різних значень n – e8 та e4
Вихідні дані:
Варіант | a0 | a1 | a2 | a3 | a4 | a5 |
2 | 1 | 0.9 | 0.8 | 0.7 | 0.5 | 2.3 |
Реалізація у MS Excel:
Хід виконання:
Визначений інтеграл
Розіб’ємо відрізок [a, b] = [0, 1] на n=16 рівних елементарних трапецій із площами s. Величину D, що дорівнює основі кожної із елементарних трапецій, позначимо буквою h і називатимемо кроком квадратурної формули, який визначається з формули
Таким чином, шукана формула трапецій має вигляд
де cj = 1,2,2,2,….2,1.
Для формули парабол (Сімпсона) замість двох прямолінійних трапецій розглядається одна трапеція, яка обмежена параболічною дугою
Елементарна площа визначається інтегралом
Враховуючи, що
Отримаємо формулу парабол (Сімпсона)
де cj = 1, 4, 2, 4, 2,…..2, 4, 1.
У формулі трапецій n є довільним числом, у формулі Сімпсона воно повинно бути парним.
Визначити всі дійсні корені поліному P(x)=a0+a1x+a2x2+a3x3 за допомогою методів Ньютона (дотичних) та методу „січних”. Результати розрахунків звести у таблицю.
Вихідні дані:
Варіант | a0 | a1 | a2 | a3 |
2 | 1,3 | -7 | -4 | -4 |
Реалізація у MS Excel:
Хід виконання:
1. Будуємо графік заданої функції та визначаємо з нього приблизне значення кореня х0 ≈ 0,17
2. Проводимо уточнення коренів за методом Ньютона та січних з точністю e=10-5 .
В розрахунках наближене значення похідної знаходиться за формулою:
При уточненні коренів рівняння методом Ньютона користуємось наступними формулами:
Чергове k-е наближення:
В якості малої величини
При уточненні коренів рівняння методом січних користуємось наступними формулами:
Для першого наближення:
Для подальших наближень:
Наближення функцій поліномами вищого порядку
Функція y=f(x) задана таблицею значень
Вихідні дані:
Варіант 2 | |||||||||||||||
x | 0 | 0,375 | 0,563 | 0,75 | 1,125 | 1,313 | 1,5 | 1,690 | 1,875 | 2,063 | 2,25 | 2,438 | 2,625 | 2,813 | 3 |
y | 4.568 | 3,365 | 2,810 | 2,624 | 0,674 | 0,557 | 0,384 | -0,556 | -1,44 | -1,696 | -1,91 | -2,819 | -3,625 | -3,941 | -4,367 |
Хід виконання:
1. Задаємо вектори x та y вихідних даних.
2. Використовуючи метод найменших квадратів, знаходимо многочлени Pm, m = 0,1,2... Розраховуємо відповідні їм значення
3. Будуємо гістограму залежності
4. На одному графіку будуємо многочлени Pm, m = 0,1,2,..., m*, і точковий графік вихідної функції.
Реалізація у MS Excel:
Визначаємо матрицю Х як суму відповідних хі у відповідних степенях та уі*хіj
За допомогою отриманих даних, будуємо, для полінома кожної степені, відповідну матрицю Х:
Визначаємо обернені матриці Х-1 до відповідних матриць Х, використовуючи вбудовану функцію Excel МОБР(....).
Визначаємо коефіцієнти відповідних поліномів, для чого визначаємо добуток матриць Х-1 та B, використовуючи вбудовану функцію МУМНОЖ(....).
Використовуючи визначені коефіцієнти поліномів аі, визначаємо значення даних поліномів у кожній точці хі.
Будуємо графік отриманих поліномів та вихідних даних: вихідні дані – точковий графік, розрахункові дані – лініями різного типу.
Визначаємо величину
Вже по побудованій гістограмі можна робити висновки про оптимальність степені полінома для апроксимації вихідних даних (мінімальне значення
Метод Ейлера. Модифікації метода Ейлера
Використовуючи метод Ейлера, скласти на відрізку [а, b] таблицю значень інтегралу диференційного рівняння y' = f (x, y), що задовольняє початковим умовам (x0, y0), вибираючи крок інтегрування h, де
y(xi+h)=y(xi)+h·y'(xi)
Розв’язати попереднє диференційне рівняння y' =f(x, y) вдосконаленим методом ломаних та вдосконаленим методом Ейлера-Коші.
Вихідні дані:
Варіант | h | [a, b] | (x0, y0) | |
2 | 0,2 | [0;1] | (0;1) | |
Реалізація у MS Excel:
Графіки розрахованих даних: