КУРСОВАЯ РАБОТА
“Численное интегрирование методом Гаусса”
Федеральное агентство по образованию
Тульский государственный университет
КАФЕДРА РАДИОЭЛЕКТРОНИКИ
ИНФОРМАТИКА
ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
Вариант № 42
Студенту гр.220371 Подобеденко И.В.
1. Тема: "Численное интегрирование-методом Гаусса"
Разработайте алгоритм и программу:
1) вычисления определённого интеграла методом Гаусса и 2) построения графика функции я 3) построения нескольких (по 2 - 3) “шагов” интегрирования на участках возрастания и убывания функции.
Контрольный пример.
Исходные данные:
2. Срок представления курсовой работы на проверку с 12 по 15 мая 2008 г.
3. Защита курсовой работы с 19 по 23 мая 2008 г.
4. Требования к курсовой работе:
3.1 Разработать алгоритм и программу решения поставленной задачи.
3.2 Язык программирования - Паскаль.
3.3 Предусмотреть: а) диалоговый ввод исходных данных с проверкой правильности вводимых величин, б) блок пояснений к работе с программой, в) решение контрольного примера.
5. Форма отчётности:
пояснительная записка (ПЗ) объёмом 25-40 страниц на листах с рамками и штампом, отпечатанная на принтере,
графическая часть - лист формата А1,
дискета с текстом ПЗ, рисунком алгоритма и программой (текстовый и исполняемый файлы).
6. Содержание пояснительной записки к курсовой работе:
1) титульный лист,
2) задание на курсовую работу (настоявши бланк).
3) аннотация (краткая характеристика проделанной работы, объём ПЗ, количество таблиц, рисунков, схем. программ и приложений) с основной надписью по форме 2 (ГОСТ 2.104-68) - 1 с,
4) содержание (лист содержания и все последующие листы - с основной надписью по форме 2а - ГОСТ 2.104-68),
5) введение (область применения поставленной задачи, возможность использования ЭВМ для решения поставленной задачи) – 1-2 с,
6) анализ задания (выбор входных и выходных данных) – 2-3 с.
7) обзор литературных источников и разработка (выбор) математической модели задачи – 2-4 с,
8) описание методов вычислительной математики, которые будут использованы при решении поставленной задачи - 3-4 с,
9) разработка алгоритма решения задачи и описание его особенностей (разработанных или выбранных из готовых процедур и функций) - 5-7 с,
10) разработка программы по схеме алгоритма - 1-2 с.
11) разработка инструкции пользования программой - 1 с.
12) распечатка программы (текстовый файл) – допускается привести как приложение – 2-3 страницы
13) распечатка исходных данных и результатов решения контрольного примера – 1-2 с.
14) заключение (подробные выводы по проделанной работе) – 1-2 с.
15) список использованной литературы – 1 с.
16) приложения (инструкции пользования программой и др.)
7. Графическая часть: алгоритм решения поставленной задачи – лист формата A1
8. Литература.
В работе рассмотрены методы численного интегрирования функций. Для подробного рассмотрения был взят метод Гаусса.
В рамках курсовой работы реализован словесный и на языке блок-схем алгоритм и программа на языке программирования Паскаль, которая вычисляет заданный интеграл по методы Гаусса и показывает графическое отображение процесса.
Объем работы – 23 листа, количество рисунков – 2, представлена одна программа.
Аннотация. 4
Введение. 6
1. Анализ задания. 8
2. Выбор математической модели задачи. 10
2.1 Метод прямоугольников. 10
2.2 Метод парабол (метод Симпсона) 11
2.4 Увеличение точности. 11
2.5 Метод Гаусса. 12
2.6 Метод Гаусса-Кронрода. 12
3. Описание методов вычислительной математики, которые будут использованы при решении поставленной задачи. 14
3.1. Разработка алгоритма решения задачи и описание его особенностей 15
3.2 Разработка программы по схеме алгоритма. 18
3.3 Разработка инструкции пользования программой. 19
3.4 Распечатка программы.. 19
3.5 Распечатка исходных данных и результатов решения контрольного примера 26
Заключение. 27
Список использованной литературы.. 28
Появление и непрерывное совершенствование быстродействующих электронных вычислительных машин (ЭВМ) привело к подлинно революционному преобразованию пауки вообще и математики в особенности. Изменилась технология научных исследований, колоссально увеличились возможности теоретического изучения, прогноза сложных процессов, проектирования инженерных конструкций. Решение крупных научно-технических проблем, примерами которых могут служить проблемы овладения ядерной энергией и освоения космоса, стало возможным лишь благодаря применению математического моделирования и новых численных методов, предназначенных для ЭВМ.
В настоящее время можно говорить, что появился новый способ теоретического исследования сложных процессов, допускающих математическое описание, - вычислительный эксперимент, т.е. исследование естественнонаучных проблем средствами вычислительной математики. Разработка и исследование вычислительных алгоритмов и их применение к решению конкретных задач составляет содержание огромного раздела современной математики - вычислительной математики.
Численные методы дают приближенное решение задачи. Это значит, что вместо точного решения и (функции или функционала) некоторой задачи мы находим решение у другой задачи, близкое в некотором смысле (например, по норме) к искомому. Основная идея всех методов - дискретизация или аппроксимация (замена, приближение) исходной задачи другой задачей, более удобной для решения на ЭВМ, причем решение аппроксимирующей задачи зависит от некоторых параметров, управляя которыми, можно определить решение с требуемой точностью. Например, в задаче численного интегрирования такими параметрами являются узлы и веса квадратурной формулы. Далее, решение дискретной задачи является элементом конечномерного пространства.
Численное интегрирование (историческое название: квадратура) - вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади криволинейной трапеции, ограниченной осью абсцисс, графиком интегрируемой функции и отрезками прямых, которые являются пределами интегрирования.
Необходимость применения численного интегрирования чаще всего может быть вызвана отсутствием у первообразной функции представления в элементарных функциях и, следовательно, невозможностью аналитического вычисления значения определённого интеграла по формуле Ньютона-Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.
Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида
где
Пусть функция задана на интервале
была точной для всех полиномов наивысшей возможной степени.
Ввиду того, что имеется параметров и
Таким образом, входными данными для нас будет являться подынтегральная функция f(x), пределы интегрирования a и b, количество узлов метода k. А также точность вычислений eps.
На выходе мы будем иметь значение определенного интеграла при заданном количестве разбиений и пределах интегрирования. Также мы получим графическое отображение процесса интегрирования на участках возрастания и убывания функции.
Кратко рассмотрим основные методы численного интегрирования и выясним почему метод Гаусса наиболее подходит для решения нашей задачи.
Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой точке отрезка
где