Если разбить интервал интегрирования на 2N равных частей, то имеем
,где
.Приближение функции одним полиномом на всем отрезке интегрирования, как правило, приводит к большой ошибке в оценке значения интеграла.
Для уменьшения погрешности отрезок интегрирования разбивают на части и применяют численный метод для оценки интеграла на каждой из них.
При стремлении количества разбиений к бесконечности, оценка интеграла стремится к его истинному значению для любого численного метода.
Приведённые выше методы допускают простую процедуру уменьшения шага в два раза, при этом на каждом шаге требуется вычислять значения функции только во вновь добавленных узлах. Для оценки погрешности вычислений используется правило Рунге.
Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (0 - методы правых и левых прямоугольников, 1 - методы средних прямоугольников и трапеций, 3 - метод парабол (Симпсона)). Если мы можем выбирать точки, в которых мы вычисляем значения функции
, то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 1-го, а 3-го порядка точности: .В общем случае, используя
точек, можно получить метод с порядком точности . Значения узлов метода Гаусса по точкам являются корнями полинома Лежандра степени .Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.
Недостаток метода Гаусса состоит в том, что он не имеет лёгкого (с вычислительной точки зрения) пути оценки погрешности полученного значения интеграла. Использование правила Рунге требует вычисления подынтегральной функции примерно в таком же числе точек, не давая при этом практически никакого выигрыша точности, в отличие от простых методов, где точность увеличивается в разы при каждом новом разбиении. Кронродом был предложен следующий метод оценки значения интеграла
,где
- узлы метода Гаусса по точкам, а параметров , , подобраны таким образом, чтобы порядок точности метода был равен .Тогда для оценки погрешности можно использовать эмпирическую формулу:
,где
- приближённое значение интеграла, полученное методом Гаусса по точкам.Функциональные модели решения задачи представлены на рисунках 1 и 2.
Используемые обозначения:
g10c1, g10c2, g10c3, g10c4, g10c5 - константы десятиточечного метода Гаусса;
g10x1, g10x2, g10x3, g10x4, g10x5 - константы десятиточечного метода Гаусса;
m, n- вспомогательные переменные;
s1, s2, s3, s4, s5, s- вспомогательные переменные;
a, b - пределы интегрирования;
f - интегрируемая функция;
gc- посчитанный интеграл на интервале (a, b);
ga, gb- переменные для подсчета интеграла на половине интервала;
eps - точность интегрирования;
k - вспомогательная переменная.
Рисунок 1 - Функциональная модель решения задачи десятиточечного метода Гаусса, реализованная методом Gaus_Calc
Рисунок 2 - Функциональная модель решения задачи для функции Gaus;; интегрируемая функция
(defunF (x)
;; 1 пример
;; (/ (* 2 (expt x 3)) (expt x 4))
;; 2 пример
;; (* 3.142 (sin (* 3.142 x)))
;; 3 пример
(* (/ (log (+x 1)) x) (exp (* - 1 x)))
)
;; десятиточечный метод Гаусса
(defunGauss_Calc (a b f)
(setq g10c1 (/ 0.9739065285 6.2012983932))
(setq g10c2 (/ 0.8650633667 6.2012983932))
(setq g10c3 (/ 0.6794095683 6.2012983932))
(setq g10c4 (/ 0.4333953941 6.2012983932))
(setq g10c5 (/ 0.1488743390 6.2012983932))
(setq g10x1 (/ 0.0666713443 6.2012983932))
(setq g10x2 (/ 0.1494513492 6.2012983932))
(setq g10x3 (/ 0.2190863625 6.2012983932))
(setq g10x4 (/ 0.2692667193 6.2012983932))
(setq g10x5 (/ 0.2955242247 6.2012983932))
(setq m (/ (+ b a) 2))
(setq n (/ ( - b a) 2))
(setq s1 (* g10c1 (+ (funcall f (+ m (* n g10x1))) (funcall f ( - m (* n g10x1))))))
(setq s2 (* g10c2 (+ (funcall f (+ m (* n g10x2))) (funcall f ( - m (* n g10x2))))))
(setq s3 (* g10c3 (+ (funcall f (+ m (* n g10x3))) (funcall f ( - m (* n g10x3))))))
(setq s4 (* g10c4 (+ (funcall f (+ m (* n g10x4))) (funcall f ( - m (* n g10x4))))))
(setq s5 (* g10c5 (+ (funcall f (+ m (* n g10x5))) (funcall f ( - m (* n g10x5))))))
(setq s (+ s1 s2 s3 s4 s5))
(* s ( - b a))
)
;; рекурсивная ф-ция подсчета с заданной точностью
;; gc - ранее посчитаный интеграл на интервале (a,b)
(defunGauss (a b eps gc f)
;; разбиваем интервал на две половины
(setq k (/ (+ a b) 2))
;; в каждой половине считаем интеграл
(setq ga (Gauss_Calc a (/ (+ a b) 2) f))
(setq gb (Gauss_Calc (/ (+ a b) 2) b f))
(if (> (abs ( - (+ ga gb) gc)) eps)
(progn
(setq ga (Gauss a (/ (+ a b) 2) (/ eps 2) (Gauss_Calc a (/ (+ a b) 2) f) f))
(+ ga (Gauss (/ (+ a b) 2) b (/ eps 2) (Gauss_Calc (/ (+ a b) 2) b f) f))
)
(+ ga gb)
)
)
;; открываем файл для чтения
(setq input-stream (open " d: \predel. txt": direction: input))
(setq a (read input-stream))
(setq b (read input-stream))
(setq eps (read input-stream))
(close input-stream)
;; находим интеграл
(setq integral (Gauss a b eps (Gauss_Calc a b (function F)) (function F)))
;; открываем файл для записи
(setq output-stream (open " d: \test. txt": direction: output))
(format output-stream "Integral = ~a" integral)
(close output-stream)
Пример 1.
Рисунок 3 - Пределы интеграла и точность вычисления для интегрируемой функции
Рисунок 4 - Результат вычисления интеграла функции
с заданными пределами и точностью вычисленияПример 2.
Рисунок 5 - Пределы интеграла и точность вычисления для интегрируемой функции
Рисунок 6 - Результат вычисления интеграла функции
с заданными пределами и точностью вычисленияПример 3.
Рисунок 7 - Пределы интеграла и точность вычисления для интегрируемой функции
Рисунок 8 - Результат вычисления интеграла функции
с заданными пределами и точностью вычисленияПроблема повышения качества вычислений, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов - сред и языков программирования.
Итогом работы можно считать созданную функциональную модель вычисления интеграла функции методом Гаусса. Созданная функциональная модель и ее программная реализация могут служить органической частью решения более сложных задач.
1. Бронштейн И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н. Бронштейн, К.А. Семендяев. - М.: Наука, 2007. - 708 с.
2. Кремер Н.Ш. Высшая математика для экономистов: учебник для студентов вузов. [Текст] / Н.Ш. Кремер, 3-е издание - М.: ЮНИТИ-ДАНА, 2006. C.412.
3. Калиткин Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. - М.: Питер, 2001. С.504.
4. Численное интегрирование [Электронный ресурс] - Режим доступа: http://ru. wikipedia.org/wiki/Численное_интегрирование
5. Семакин И.Г. Основы программирования. [Текст] / И.Г. Семакин, А.П. Шестаков. - М.: Мир, 2006. C.346.
6. Симанков В.С. Основы функционального программирования [Текст] / В.С. Симанков, Т.Т. Зангиев, И.В. Зайцев. - Краснодар: КубГТУ, 2002. - 160 с.
7. Степанов П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А. Степанов, А.В. Бржезовский. - М.: ГУАП, 2003. С.79.
8. Хювенен Э. Мир Лиспа [Текст] / Э. Хювенен, Й. Сеппянен. - М.: Мир, 1990. - 460 с.