· второй, третий, четвертый и пятый биты последовательности B задают номер колонки l
· результат преобразования выбирается из строки k и колонки l.
Предположим, что B=011011. Тогда S(1)(B)=0101. Действительно, k=1, l=13. В колонке 13 строки 1 задано значение 5, которое и является значением функции S(1)(011011).
Функция перестановки бит P(L), также используемая для определения функции шифрования, задается значениями, приведенными в таблице 5. В последовательности L 32 перестанавливается так, чтобы бит 16 стал первым битом, бит 7 - вторым и т.д.
16 | 7 | 20 | 21 | 29 | 12 | 28 | 17 | 1 | 15 | 23 | 26 | 5 | 18 | 31 | 10 |
2 | 8 | 24 | 14 | 32 | 27 | 3 | 9 | 19 | 13 | 30 | 6 | 22 | 11 | 4 | 25 |
Чтобы завершить описание алгоритма шифрования данных, осталось привести алгоритм получение ключей K(i), i=1,2,...,16, размерностью в 48 бит. Ключи K(i) определяются по 64-битовому ключу шифра как это показано.
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 58 | 50 | 42 | 34 | 26 | 18 |
10 | 2 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 | 60 | 52 | 44 | 36 |
63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 | 62 | 54 | 46 | 38 | 30 | 22 |
14 | 6 | 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 28 | 20 | 12 | 4 |
Как видно из таблицы, для генерации последовательностей C(0) и D(0) не используются биты 8,16,25,32,40,48,56 и 64 ключа шифра. Эти биты не влияют на шифрование и могут служить для других целей (например, для контроля по четности). Таким образом, в действительности ключ шифра является 56-битовым. После определения C(0) и D(0) рекурсивно определяются C(i) и D(i), i=1,2,...,16. Для этого применяются операции сдвига влево на один или два бита в зависимости от номера шага итерации, как это показано в таблицей 7. Операции сдвига выполняются для последовательностей C(i) и D(i) независимо. Например, последовательность C(3) получается, посредством сдвига влево на две позиции последовательности C(2), а последовательность D(3) - посредством сдвига влево на две позиции последовательности D(2). Следует иметь в виду, что выполняется циклический сдвиг влево. Например, единичный сдвиг влево последовательности C(i) приведет к тому, что первый бит C(i) станет последним и последовательность бит будет следующая: 2,3,..., 28,1.
Этап | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Число | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
14 | 17 | 11 | 24 | 1 | 5 | 3 | 28 | 15 | 6 | 21 | 10 |
23 | 19 | 12 | 4 | 26 | 8 | 16 | 7 | 27 | 20 | 13 | 2 |
41 | 52 | 31 | 37 | 47 | 55 | 30 | 40 | 51 | 45 | 33 | 48 |
44 | 49 | 39 | 56 | 34 | 53 | 46 | 42 | 50 | 36 | 29 | 32 |
Как следует из таблицы первый бит K(i) - это бит 14 последовательности C(i)D(i), второй - бит 17, последний - бит 32.
Шифруемое сообщение – шифровка = 11111000 11101000 11110100 11110000 1110111011100010 11101010 11100000
Ключ шифрования 12345678 = 00110001 00110010 00110011 00110100 00110101 0011011000110111 00111000
Входная последовательность
1111100011101000111101001111000011101110111000101110101011100000 - согласно таблице начальной перестановки перестанавливаем биты в сообщении.
58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 | 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 | 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
Полученная последовательность1111111100001101000101000000000011111111111111110101001101110000
Делим полученную последовательность согласно таблицам.
Последовательности получаются путём деления блока в 64 бита на 2 равных части.
L(0) перестановка
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
L(0) последовательностьполученная 11111111000011010001010000000000
R(0) перестановка
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
R(0) последовательностьполученная 11111111111111110101001101110000
Входная последовательность
0011000100110010001100110011010000110101001101100011011100111000
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 58 | 50 | 42 | 34 | 26 | 18 |
10 | 2 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 | 60 | 52 | 44 | 36 |
63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 | 62 | 54 | 46 | 38 | 30 | 22 |
14 | 6 | 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 28 | 20 | 12 | 4 |
Полученная последовательность 00000000000000001111111111110110011001111000100000001111
Полученную последовательность(ключа) делим на две согласно таблицам.
C(0)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Последовательность C(0) = 0000000000000000111111111111
D(0)
29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |
43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
Последовательность D(0) = 0110011001111000100000001111
По таблице сдвигаем биты в последовательностях
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
C(0) = 0000000000000000111111111111