Для решения задач на собственные векторы и собственные значения в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы:
eigenvals(A) — вычисляет вектор, элементами которого являются собственные значения матрицы А; По умолчанию Mathcad отобразит три знака после запятой. Если необходимо увеличить точность собственных чисел матрицы, то необходимо воспользоваться командами: Format-Number главного меню и указать в окошечке DisplayedPrecision (3) желаемое число знаков после запятой (от 0 до 15).
2.4.2 Нахождение матрицы векторов собственных значений матрицы
а)Вычисление матрицы, содержащей нормированные собственные векторы, соответствующие собственным значениям матрицы А
· eigenvecs(A) — вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы А;
o n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения, вычисляемого eigenvals;
для устранения ошибки округления увеличили точность до 8 знаков после запятой.
б)Вычисление собственного вектора для матрицы А и заданного собственного значения λ
Данную функцию применим к действительным собственным значениям.
Проверка правильности нахождения собственных векторов и собственных значений приведена для значения λ0 . Причем проверка правильности выражения Ах=λх проведена дважды — сначала на числовых значениях х и λ, а потом путем перемножения соответствующих матричных компонентов.
Вычисление собственного вектора для матрицы А и λ3.
Как мы видим, в этом случае собственные вектора и матрица собственных векторов матрицы А, имеют численные значения, отличающиеся знаками. Однако это не меняет общности поставленной задачи, так как речь идёт о пространстве, в котором находятся собственные вектора матрицы А.
2.4.3 Приведение заданной матрицы к диагональному виду
В Mathcad легко создать матрицы определенного вида с помощью одной из встроенных функций, например:
· diag(v) — создаст диагональную матрицу, на диагонали которой находятся элементы вектора v;
Рассмотрим вектор, элементами которого являются собственные значения матрицы А.
Для квадратной матрицы А часто бывает необходимо найти, если это возможно, такую квадратную матрицу, чтобы выполнялось условие:
Р-1 ·А·Р = L
Здесь L представляет собой квадратную матрицу diag (λ1, λ2……. λn) , где λ1, λ2…… λn являются собственными значениями матрицы А.
Найденная выше матрица Р содержит нормированные собственные векторы, соответствующие собственным значениям матрицы А; n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения.
Матрица векторов собственных значений матрицы А приводит ее к треугольному виду:
3. Выводы по работе
В результате выполнения практической работы №1 были изучены возможности математического пакета MathCad в среде Windowsс целью дальнейшего использования матричной алгебры в инженерных расчетах электротехнических систем. Были изучены и повторены основные моменты теории матриц. Изучены способы задания векторов и матриц в среде MathCad. Я научился работать с массивами, векторами и матрицами, применял векторные и матричные операторы и функции. Вторая по частоте применения задача вычислительной линейной алгебры — это задача поиска собственных векторов и собственных значений матрицы. Для решения таких задач в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы. Применение матричных функций намного облегчает расчёты по теоретическим основам электротехники, теории автоматического управления и другим дисциплинам. Как оказалось, особенно просто в MathCad работать с комплексными числами и полиномами высших порядков. Решение характеристических уравнений выдаётся в виде векторов, которые можно далее преобразовывать с помощью матричной алгебры, представленной в MathCad.