Смекни!
smekni.com

ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения дифференциального уравнения n-го порядка (стр. 1 из 2)

Министерство Топлива и Энергетики Украины

СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ

Практическое занятие №3

по дисциплине

«Использование ЭВМ в инженерных расчетах электротехнических систем»

Тема : ЭВМ С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОГО ПАКЕТА MathCad В СРЕДЕ WINDOWS ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ N-го ПОРЯДКА.

Вариант №8

Выполнил: студент группы ЭСЭ 22-В

Левицкий П.В.

Проверил:_______________________

Севастополь 2008


ПЛАН

1. Данные варианта задания.

2. Решение дифференциального уравнения N-го порядка

2.1. Решение дифференциальных уравнений N-гопорядка методом интегрирования при помощи характеристического уравнения:

· при y(t) = 0 и заданных начальных условиях ;

· при y(t) = 1(t) и нулевых начальных условиях;

· при y(t) = 1(t) и заданных начальных условиях;

· при y(t) = cos(aּπּt) и нулевых начальных условиях;

2.2. Решение дифференциальных уравнений N-гопорядка операторным методом:

· при y(t) = 0 и заданных начальных условиях;

· при y(t) = 1(t) и нулевых начальных условиях;

· при y(t) = 1(t) и заданных начальных условиях;

· при y(t) = cos(aּπּt) и нулевых начальных условиях;


1. Данные варианта задания

ПРИЛОЖЕНИЕ №1

( к практическому занятию №3)

Дифференциальное уравнения 4-го порядка

Т а б л и ц а № 1

№вар

Коэффициенты дифференциального

уравнения 4–го порядка

Правая часть уравнения и начальные условия
а0 а1 а2 а3 а4 b0 y(t) = 1(t)x0(0) = 1x1(0) = x2(0)= x3(0) = 0 y(t) = cos(aּπּt)x0(0) = -1x1(0) = x2(0)= x3(0) = 0
8 10 20 1.7 0.16 0.08 10 a = 0.35

2. Решение дифференциального уравнения N-го порядка

2.1 Решение дифференциальных уравнений N-гопорядка методом интегрирования при помощи характеристического уравнения

2.1.1 При y(t) = 0 и заданных начальных условиях

Дифференциальное уравнение 4-го порядка, описывающее динамические процессы электротехнической системы имеет вид:

Водим уравнение, пользуясь панелью «Исчисления» в Mathcad.

При заданных по условию значениях коэффициентов, уравнение примет вид:

Данное линейное дифференциальное уравнения 4-го порядка преобразуем

в систему дифференциальных уравнений первого порядка (в нормальную форму Коши). Обозначим:


Зададим вектор начальных значений:

СПРАВКА: В Mathcad 11 имеются три встроенные функции, которые позволяют решать поставленную в форме (2—3) задачу Коши различными численными методами.

· rkfixed(y0, t0, t1, M, D) — метод Рунге-Кутты с фиксированным шагом,

· Rkadapt(y0, t0, t1, M, D) — метод Рунге-Кутты с переменным шагом;

· Buistoer(y0, t0, t1, M, D) — метод Булирша-Штера;

o у0 — вектор начальных значений в точке to размера NXI;

o t0 — начальная точка расчета,

o t1 — конечная точка расчета,

o M — число шагов, на которых численный метод находит решение;

o D — векторная функция размера NXI двух аргументов — скалярного t и векторного у При этом у — искомая векторная функция аргумента t того же размера NXI.

Таким образом, воспользуемся функцией rkfixed(y0, t0, t1, M, D) -получим матрицу решения системы обыкновенных дифференциальных уравнений численным методом Рунге-Кута на интервале от t0 до t1 при M фиксированных шагах решения и правыми частями уравнений, записанными в D. Тогда решение уравнения динамики электротехнической системы с помощью встроенной функции rkfixed выглядит так:

Зададим интервал интегрирования t0 - t1, количество шагов интегрирования М, вектор заданных начальных условий ic и правую часть дифференциального уравнения y(t):

Сформируем матрицу системы дифференциальных уравнений, соответствующую заданному дифференциальному уравнению 4-го порядка.

Применим функцию:

-Интервал времени.

-Значение искомой координаты.


Рисунок1. Матрица решений системы уравнений.

По этой таблице можно определять расчётные значения исходного вектора на заданном шаге.

Результаты численного решения дифференциального уравнения можно вывести в виде таблицы с прокруткой времени и искомой неизвестной (см файл в Mathcad). Согласно выбранному М получили 1500 строк.


Рисунок2. Результаты пошагового решения дифференциального уравнения, представленные в виде таблицы.

Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат представлено на рисунке 3. График изображён так, что можно проверить значения строки 1500. При Т=150, Х=4,563*10^130

Рисунок 3. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат. При y(t) = 0 и заданных начальных условиях.


2.1.2 При y(t) = 1(t) и нулевых начальных условиях

В этом случае необходимо изменить начальные условия и задать правую часть дифференциального уравнения.