Процесс разработки промышленной экспертной системы, опираясь на традиционные технологии, можно разделить на шесть более или менее независимых этапов, практически не зависимых от предметной области.
Последовательность этапов дана для общего представления о создании идеального проекта. Конечно, последовательность эта не вполне фиксированная. В действительности каждый последующий этап разработки экспертной системы приносит новые идеи, которые могут повлиять на предыдущие решения и даже привести к их переработке. Именно поэтому многие специалисты по информатике весьма критично относятся к методологии экспертных систем. Они считают, что расходы на разработку таких систем очень большие, время разработки слишком длительное, а полученные в результате программы ложатся тяжёлым бременем на вычислительные ресурсы.
В целом за разработку экспертных систем целесообразно браться организации, где накоплен опыт по автоматизации рутинных процедур обработки информации, например:
· информационный поиск;
· сложные расчёты;
· графика;
· обработка текстов.
Решение таких задач, во-первых, подготавливает высококвалифицированных специалистов по информатике, необходимых для создания интеллектуальных систем, во-вторых, позволяет отделить от экспертных систем неэ
Этап 1: выбор подходящей проблемы
Этот этап включает деятельность, предшествующую решению начать разрабатывать конкретную экспертную систему. Он включает:
· определение проблемной области и задачи;
· нахождение эксперта, желающего сотрудничать при решении проблемы, и назначение коллектива разработчиков;
· определение предварительного подхода к решению проблемы;
· анализ расходов и прибыли от разработки;
· подготовку подробного плана разработки.
Правильный выбор проблемы представляет, наверное, самую критическую часть разработки в целом. Если выбрать неподходящую проблему, можно очень долгое время искать решение спроектированных задач. Неподходящая проблема может также привести к созданию экспертной системы, которая стоит намного больше, чем экономит. Дело будет обстоять ещё хуже, если разработать систему, которая работает, но не приемлема для пользователей. Даже если разработка выполняется самой организацией для собственных целей, эта фаза является подходящим моментом для получения рекомендаций извне, чтобы гарантировать удачно выбранный и осуществимый с технической точки зрения первоначальный проект.
При выборе области применения следует учитывать, что если знание, необходимое для решения задач, постоянное, чётко формулируемое и связано с вычислительной обработкой, то обычные алгоритмические программы, по всей вероятности, будут самым целесообразным способом решения проблем в этой области.
Экспертная система ни в коем случае не устранит потребность в реляционных базах данных, статистическом программном обеспечении, электронных таблицах и системах текстовой обработки. Но если результативность задачи зависит от знания, которое является субъективным, изменяющимся, символьным или вытекающим частично из соображений здравого смысла, тогда область может обоснованно выступать претендентом на экспертную систему.
Рассмотрим некоторые факты, свидетельствующие о необходимости разработки и внедрения экспертных систем:
· нехватка специалистов, расходующих значительное время для оказания помощи другим;
· потребность в многочисленном коллективе специалистов, поскольку;
· сниженная производительность, поскольку задача требует полного анализа сложного набора условий, а обычный специалист не в состоянии просмотреть (за отведённое время) все эти условия;
· большое расхождение между решениями самых хороших и самых плохих исполнителей;
· наличие конкурентов, имеющих преимущество в том, что они лучше справляются с поставленной задачей.
Подходящие задачи имеют следующие характеристики:
· являются узкоспециализированными;
· не зависят в значительной степени от общечеловеческих знаний или соображений здравого смысла;
· не являются для эксперта слишком лёгкими, ни слишком сложными (время, необходимое эксперту для решения проблемы, может составлять от трех часов до трех недель);
· условия исполнения задачи определяются самим пользователем системы;
· имеет результаты, которые можно оценить.
Обычно экспертные системы разрабатываются путём получения специфических знаний от эксперта и ввода их в систему. Некоторые системы могут содержать стратегии одного индивида. Следовательно, найти подходящего эксперта - это ключевой шаг в создании экспертных систем.
В процессе разработки и последующего расширения системы инженер по знаниям и эксперт обычно работают вместе. Инженер по знаниям помогает эксперту структурировать знания, определять и формализовать понятия и правила, необходимые для решения проблемы.
Во время первоначальных бесед они решают, будет ли их сотрудничество успешным. Это немаловажно, поскольку обе стороны будут работать вместе по меньшей мере в течение одного года. Кроме них в коллектив разработчиков целесообразно включить потенциальных пользователей и профессиональных программистов.
Предварительный подход к программной реализации задачи определяется исходя из характеристик задачи и ресурсов, выделенных на ее решение. Инженер по знаниям выдвигает обычно несколько вариантов, связанных с использованием имеющихся на рынке программных средств. Окончательный выбор возможен лишь на этапе разработки прототипа.
После того как задача определена, необходимо подсчитать расходы и прибыли от разработки экспертной системы. В расходы включаются затраты на оплату труда коллектива разработчиков. В дополнительные расходы включают стоимость приобретаемого программного инструментария, с помощью которого разрабатывается экспертная система.
Прибыль возможна за счёт снижения цены продукции, повышения производительности труда, расширения номенклатуры продукции или услуг или даже разработки новых видов продукции или услуг в этой области. Соответствующие расходы и прибыли от системы определяются относительно времени, в течение которого возвращаются средства, вложенные в разработку. На современном этапе большая часть фирм, развивающих крупные экспертные системы, предпочли разрабатывать дорогостоящие проекты, приносящие значительные прибыли.
Наметились тенденции разработки менее дорогостоящих систем, хотя и с более длительным сроком возвращаемости вложенных в них средств, так как программные средства разработки экспертных систем непрерывно совершенствуются.
После того как инженер по знаниям убедился, что:
· данная задача может быть решена с помощью экспертной системы;
· экспертную систему можно создать предлагаемыми на рынке средствами;
· имеется подходящий эксперт;
· предложенные критерии производительности являются разумными;
· затраты и срок их возвращаемости приемлемы для заказчика,
он составляет план разработки. План определяет шаги процесса разработки необходимые затраты, а также ожидаемые результаты.
Этап 2: разработка прототипной системы
Понятие прототипной системы
Прототипная системаявляется усечённой версией экспертной системы, спроектированной для проверки правильности кодирования фактов, связей и стратегий рассуждения эксперта. Она также даёт возможность инженеру по знаниям привлечь эксперта к активному участию в разработке экспертной системы и, следовательно, к принятию им обязательства приложить все усилия для создания системы в полном объёме.
Объём прототипа - несколько десятков правил, фреймов или примеров. Выделяют шесть стадий разработки прототипа. Рассмотрим краткую характеристику каждой из стадий.
Сроки приведены условно, так как зависят от квалификации специалистов и особенностей задачи.
Идентификация проблемы
Уточняется задача, планируется ход разработки прототипа экспертной системы, определяются:
· необходимые ресурсы (время, люди, ЭВМ и так далее.);
· источники знаний (книги, дополнительные эксперты, методики);
· имеющиеся аналогичные экспертные системы;
· цели (распространение опыта, автоматизация рутинных действий и другие);
· классы решаемых задач и так далее.
Идентификация проблемы - знакомство и обучение коллектива разработчиков, а также создание неформальной формулировки проблемы.
Средняя продолжительность 1 - 2 недели.
Извлечение знаний
Происходит перенос компетентности экспертов на инженеров по знаниям с использованием различных методов:
· анализ текстов;
· диалоги;
· экспертные игры;
· лекции;
· дискуссии;
· интервью;
· наблюдение и другие.
Извлечение знаний - получение инженером по знаниям наиболее полного представления предметной области и способах принятия решения в ней.
Средняя продолжительность 1 - 3 месяца.
Структурирование или концептуализация знаний
Выявляется структура полученных знаний о предметной области, то есть определяются:
· терминология;
· список основных понятий и их атрибутов;
· отношения между понятиями;
· структура входной и выходной информации;
· стратегия принятия решений;
· ограничения стратегий и так далее.
Концептуализация знаний – разработка неформального описания знаний о предметной области в виде графа, таблицы, диаграммы или текста, которое отражает основные концепции и взаимосвязи между понятиями предметной области.
Средняя продолжительность этапа 2 – 4 недели.