Смекни!
smekni.com

Электронные системы отображения навигационных карт (стр. 16 из 26)

Приемоиндикаторы среднеорбитальных СНС и аппаратура отображения навигационных карт выгодно дополняют друг друга. Их совместное применение позволяет отображать положение судна в реальном масштабе времени, что имеет особенное значение при плавании в стесненных водах. При использовании бумажных карт требуется определенное время для переноса позиции судна с приемоиндикатора СНС на карту, что вызывает запаздывание в отображении текущей позиции. Кроме того, на бумажной карте нет возможности отображать положение судна непрерывно. При использовании систем отображения электронных карт на судне может быть установлен недорогой приемник СНС, так как дополнительные навигационные задачи в этом случае будут решаться НИКС.

При работе GPS в дифференциальном режиме в районе опорной станции НИКС оказывает значительную помощь судоводителю при плавании в стесненных водах, предоставляя в реальном времени точное положение судна на ЭК. Расширение сети опорных станций DGPS способствует значительному повышению роли НИКС в обеспечении безопасного судовождения.

4.3.2 Краткая характеристика GPS и ее погрешностей

Состав системы. Спутниковая навигационная система Министерства Обороны США GPS, называемая также NAVSTAR (NavigationSystemusingTimingandRanging), состоит из 24 навигационных искусственных спутников Земли (НИСЗ), наземного командно-измерительного комплекса и аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трехмерном околоземном пространстве.

Спутники GPS расположены на шести средневысоких орбитах (высота 20183 км) и имеют период обращения 12 часов. Плоскости орбит расположены через 60° и наклонены к экватору под углом 55˚. На каждой орбите располагается 4 спутника, три основных спутника и один запасной. 18 спутников - это минимальное количество для обеспечения видимости в каждой точке Земли не менее 4-х спутников.

Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью. Она может применяться в режиме двухмерной навигации - 2D (определение навигационных параметров объектов на поверхности Земли) и в трехмерном режиме - 3D (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения положения объекта в трехмерном режиме требуется измерить навигационные параметры не менее 4-х НИСЗ, а при двухмерной навигации - не менее 3-х НИСЗ.

В системе используется псевдодальномерный метод определения положения и псевдорадиально-скоростной метод нахождения скорости объекта. Для повышения точности результаты определений сглаживаются с помощью фильтра Калмана.

Излучение навигационных сигналов спутниками GPS производится на двух частотах: Fl=1575,42 и F2=1227,60 МГц. Режим излучения -непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой защищенный Р-код (precisioncode), излучаемый на часотах Fl, F2, и общедоступный С/А-код (coarseandacquisitioncode), излучаемый только на частоте Fl.

В GPS для каждого спутника определен свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. Он позволяет в приемнике распознавать, какому спутнику принадлежит сигнал, когда несущая частота сигналов всех спутников одинакова.

GPS предоставляет два уровня обслуживания потребителей; точные определения (PPS - PrecisePositioningService) и стандартные определения (SPS - StandardPositioningService). PPS основывается на точном Р-коде, а SPS - на общедоступном С/А-коде. Уровень обслуживания PPS предоставляется военным и федеральным службам США, а SPS - массовому гражданскому потребителю.

Кроме кодов Р и С/А спутник регулярно передает сообщение, которое содержит информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности.

Бортовая аппаратура GPS состоит из антенны и приемоиндикатора (ПИ). ПИ включает в себя приемник, вычислитель, блоки памяти, устройства управления и индикации. В блоках памяти хранятся необходимые данные, программы решения задач и Управления работой приемоиндикатора. В зависимости от назначения используется два вида бортовой аппаратуры: специальная и для массового потребителя.

Специальная аппаратура предназначена для определения кинематических параметров ракет, военных самолетов, кораблей и специальных судов. При нахождении параметров объектов в ней используются Р и С/А коды. Эта аппаратура обеспечивает практически непрерывные определения с точностью: местоположения объекта - 5-7 м, скорости - 0.05-0.15 м/с, времени - 5-15 нс.

Аппаратура для массового гражданского потребителя, в том числе и для морских судов, уступает по своим характеристикам специальной аппаратуре. Определение кинематических параметров объектов ведется в ней по наблюдениям находящихся в зоне видимости НИСЗ с использованием только С/А-кода. Эта аппаратура проще и дешевле специальной аппаратуры. Она способна обеспечивать точность определения местоположения порядка 35-45 м. Однако Министерство Обороны США с военной точки зрения посчитало предоставление такой точности всем без исключения потребителям потенциально опасным и искусственно снижала точность местоопределения до 100 м. Для этого в режиме SPS формировались ошибки искусственного происхождения (погрешности режима селективного доступа), вносимые в сигналы на борту спутников. С 2000 г. Правительством США ввод искусственных ошибок в данные GPS был отменен.

Погрешности и ограничения. Основными источниками погрешностей, влияющих на точность бортовой аппаратуры для массового потребителя, являются:

• Ионосферные погрешности, обусловленные задержками в распространении радиоволн в верхних слоях атмосферы, которые приводят к ошибкам определения положения порядка 20-30 м днем и 3-6 м ночью.

• Тропосферные погрешности, причиной которых являются искажения в прохождении радиоволн через нижние слои атмосферы. Они не превышают 30 м.

• Эфемеридная погрешность, обусловленная разностью между расчетным и действительным положениями спутника, которая составляет не более 3 м.

• Погрешность определения расстояния до спутника, обычно не превышающая 10 м.

Средняя квадратическая величина погрешности режима селективного доступа (ошибки искусственного происхождения, вносимой до 2000 г. с целью загрубления навигационных измерений) составляла примерно 30 м.

Следует также обратить внимание и на периодическое возникновение в системе зон PDOP (PositionDilutionofPrecision), в которых не обеспечивается объявленная точность навигации. Эти зоны возникают в течении 5-15 мин в диапазоне 30-50° северной и южной широт.

Дифференциальный метод определений. Основным способом повышения точности местоопределений GPS в режиме SPS является применение принципа дифференциальных навигационных измерений. Дифференциальный способ (DGPS) реализуется с помощью опорной станции с известными координатами, устанавливаемой в районе определений места. На станции располагается контрольный GPS-приемник. Сравнивая свои известные координаты с измеренными, контрольный GPS-приемник вырабатывает поправки, которые передаются потребителям по радиоканалу. Аппаратура потребителя в этом случае должна быть дополнена радиоприемником для получения дифференциальных поправок. Поправки, принятые от опорной станции, автоматически вводятся в результаты измерений. Это позволяет установить в районе опорной станции координаты объекта с точностью 1-5 м. Точность DGPS-определений зависит от характеристик опорной станции и от расстояния от объекта до опорной станции. По этой причине опорную станцию рекомендуется располагать не далее 500 км от объекта.

Существенной проблемой, снижающей эффективность системы GPS, является неточность геодезической съемки ряда районов Земли. GPS представляет координаты определяющихся объектов во всемирной геодезической системе WGS84. Существуют поправки для перехода от этой системы к ряду других геодезических систем. Однако не ко всем. Кроме этого, горизонтальный датум значительного количества навигационных карт неизвестен. В ряде районов Земли (например, островов Юго-восточной Азии), съемка которых производилась в далеком прошлом, из-за больших погрешностей опорных точек геодезической сети отличия координатной системы карты от WGS84 могут быть значительными. Из-за отсутствия поправок место судна в системе WGS84, перенесенное на такую карту, может оказаться на берегу.

4.3.3 Краткая характеристика системы «ГЛОНАСС»

Советская глобальная спутниковая навигационная система (ГЛОНАСС) состоит из 24 НИСЗ, наземного командно-измерительного комплекса и аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трехмерном околоземном пространстве. В полном объеме функционирование ГЛОНАСС началось с января 1996 г.

Спутники ГЛОНАСС расположены на трех средневысоких орбитах (высота 19100 км) и имеют период обращения 11 часов 15 минут. Плоскости орбит расположены через 120° и наклонены к экватору под углом 64.8°. На каждой орбите располагается 8 спутников.

Каждый спутник излучает информацию о своей точной позиции и информацию о позициях других спутников. Излучение навигационных сигналов спутниками ГЛОНАСС производится на двух несущих частотах: F1 и F2. Режим излучения - непрерывный с псевдошумовой модуляцией. В отличие от GPS, каждый спутник ГЛОНАСС имеет свои значения F1 и F2. Значения частот F1 всех спутников ГЛОНАСС лежат в диапазоне 1602.6-1615.5 МГц и отличаются для разных спутников на величину, кратную 0.5625 МГц. Соответственно значения частот F2 находятся в диапазоне 1246.4-1256.5 МГц и отличаются для разных спутников на величину, кратную 0.4375 МГц.