Смекни!
smekni.com

Вычислительная техника и программирование (стр. 1 из 2)

КУРСОВАЯ РАБОТА

по теме: "Вычислительная техника и программирование"

Киев

Введение

Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)"j(х).

Что касается критерия согласия, то классическим критерием согласия является "точное совпадение в узловых точках". Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это "наименьшие квадраты". Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.

Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.

Один из подходов к задаче интерполяции — метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, что функция (1) является требуемым многочленом степени n; он равен 1, если X=Xj и 0, когда X=Xi, i¹j.

(1)

Многочлен Lj(x)×Yj принимает значения Yi в i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что (2) есть многочлен степени n, проходящий через n+1 точку (Xi, Yi).

(2)

Другой подход — метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn, аппроксимирующую функцию f(x):

P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+

(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn);

разделённая разность 1-го порядка;
разделённая разность 2-го порядка и т.д.

Значения Pn(x) в узлах совпадают со значениями f(x)

Фактически формулы Лагранжа и Ньютона порождают один и тот же полином, разница только в алгоритме его построения.

Постановка задачи:

1. Построить интерполяционный полином Ньютона по значениям функции в узлах:

.

2. Математическая постановка задачи:

Формула выглядит так:

Разделённая разность:

.

1.Алгоритм программы Polinom

Рис.1Схема алгоритма подпрограммы Swap
Рис.2 Схема алгоритма подпрограммы Null
Рис.3 Схема алгоритма подпрограммы Rise
Рис.4 Схема алгоритма подпрограммы Calculat

Рис.5 Схема алгоритма подпрограммы Vvod

Рис.6 Схема алгоритма программы Print_Polinom


Рис.7 Схема алгоритма подпрограммы Div_Res

Рис.8Схема алгоритма программы Nuton


Рис.9 Схема алгоритма подпрограммы Recover

Рис.10 Блок-схема программы Polinom

2. Листинг программы Polinom

Реализуем алгоритм на языке высокого уровня TurboPascal, используя подпрограммы.


PROGRAMPOLINOM; {Программа построения интерполяционного полинома Ньютона}

Uses Crt;

Const Max_Num_Usel=20; {Количествоузлов}

Type

Matrix_Line = Array[1..Max_Num_Usel] Of Real;

Var Max:Byte;

X,F:Matrix_Line;

PROCEDURE Swap(Var First,Second:real); {Обменадвух REAL переменных}

Var Temp:Real;

Begin

Temp:=First;

First:=Second;

Second:=Temp;

End; {Swap}

FUNCTION Rise(Root:Real;Power:Integer):Real; {Возведениевстепень}

Var Temp:Real;

i:Integer;

Begin

Temp:=1;

For i:=1 To Power Do

Temp:=Temp*Root;

Rise:=Temp;

End; {Rise}

PROCEDURE Null(Last:Byte;Var M:Matrix_Line); {Обнулениематриц}

Var i:Byte;

Begin

For i:=1 To Last Do

M[i]:=0;

End; {Null}

PROCEDURE Calculat(Num:Integer;Cx:Matrix_Line); {вычислениезначенийполинома}

Var x,y:Real;

i:Integer;

Finish:Boolean;

c:Char;

Begin

Writeln('***********************************************');

Writeln;

Writeln('Вычисление значений интерполяционного полинома:');

Writeln('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');

Writeln('Введите значение x:');

Repeat

y:=0;

Readln(x);

For i:=Num DownTo 1 Do

y:=y+Cx[i]*Rise(x,i-1);

Writeln('Значение полинома в точке Xo=',x:7:4,' равно Yo=',y:7:4);

Write('Нажмите `ESC` для выхода или любую клавишу для продолжения');

c:=Readkey;

If c=#27 Then Finish:=True Else Finish:=False;

GoToXY(1,WhereY-2);

DelLine; DelLine;DelLine;

Until Finish;

End; {Calculat}

PROCEDURE Vvod(Var Mat_x,Mat_f:Matrix_Line;Var Number:Byte);

Var c:Char;

i,j:Integer;

Enter:Boolean;

Begin

ClrScr;

Writeln('Построение интерполяционного полинома Ньютона по значениям функции в узлах');

Writeln('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~);

Writeln;

Writeln('Введите кол-во узлов интерполяции (0<N<',Max_Num_Usel,'):');

Repeat

Readln(Number);

Until (Number<Max_Num_Usel);

ClrScr;

Writeln('Значения узлов не должны сопадать');

Writeln('Введите значения узлов и значения функций в них:');

For i:=1 To Number Do

Begin

Repeat

{Вводузлов}

Enter:=True;{Правильностьввода}

GoToXY(5,i+3);

Write('X(',i-1,')=');

Readln(Mat_x[i]);

For j:=i-1 DownTo 1 Do

If (Mat_x[j]=Mat_x[i]) Then {Проверка на одинаковые узлы}

Begin

Writeln('Значения узлов ',i,' и ',j,' введены неверно!!!');

Write('Нажмите `Y` для повторения ввода или любую клавишу для выхода');

c:=Readkey;

If (c='Y') Or (c='y') Then Enter:=False Else Halt;

GoToXY(5,i+3);

DelLine;DelLine;DelLine;

End;

UntilEnter;

{Ввод значений функции в узлах}

GoToXY(35,i+3);

Write('Y(',Mat_x[i]:5:2,')=');

Readln(Mat_f[i]);

End;

{Сортировка узлов по возрастанию}

Fori:=1 ToNumberDo

For j:=i To Number Do

If (Mat_x[j]<Mat_x[i]) Then

Begin

Swap(Mat_x[j],Mat_x[i]);

Swap(Mat_f[j],Mat_f[i]);

End;

End;{Vvod}

{Распечаткаполинома}

PROCEDURE Print_Polinom(N:Integer;Cx:Matrix_Line);

Var i:Integer;

c:Char;

Begin

Writeln;

Writeln('ПолиномНьютона:');

Write('P',N-1,'(x)=');

Fori:=NDownTo 1 Do

IfRound(Cx[i]*1000)<>0 Then{Если в числе не более 3х нулей после запятой,}

Begin{тогда выводим его на экран}

If (Cx[i]<0) Then Write(' - ') Else Write(' + ');

Write(ABS(Cx[i]):5:3);

If (i>2) Then Write('·x^',i-1) Else

If (i>1) Then Write('·x')

End;

Writeln;

Writeln;

Writeln('Нажмите `ESC` для выхода или любую клавишу для вычисления значения полинома');

c:=Readkey;

GoToXY(1,WhereY-1);

DelLine;DelLine;

If c<>#27 Then Calculat(N,Cx);

End;{Print_Polinom}

PROCEDURE Recover(Current,Number:byte; Var Result,Mat_X:Matrix_Line);

{Восстановление коэффициентов полинома по его корням}

Var Process,i,j,k:Integer;

Begin

{Заносим первый линейный множитель вида (X - Cn) в Result}

k:=2; {Количество коэффициентов в Result = 2}

IfCurrent<>1 Then{Если исключаем не Х1, то Result[1] = X1}

Begin

Result[1]:=-Mat_X[1];

Process:=2 {Начнем обработку со второго множителя}

End

Else Begin {Иначе Result[1] = X2}

Result[1]:=-Mat_X[2];

Process:=3 {Начнем обработку с третьего множителя}

End;

Result[2]:=1; {В любом случае Result[2] = 1, т.к. все множители вида (X - Cn) }

For i:=Process To Number Do

If i<>Current Then

Begin

For j:=k DownTo 1 Do {Домнoжаемполученныйполиномна X}

Result[j+1]:=Result[j];

Result[1]:=0; {Поэтому C0 = 0}

Forj:=1 TokDo{Домнoжаем полученный полином на Cn = -X[n]}

Result[j]:=Result[j]-Mat_X[i]*Result[j+1];

Inc(k); {Размерность полинома увеличилась}

End;

End; {Recover}

PROCEDURE Nuton(Number:Byte;Var Mat_x,Mat_f:Matrix_Line);

{ИнтерполяционнаяформулаНьютона }

Var i,j:integer;

Temp,Result:Matrix_Line;

C:real;

{Функция вычисления разделенной разности по начальному и конечному узлам}

Function Div_Res(Beg_Usel,Fin_Usel:Byte;Var Xn,Fn:Matrix_Line):real;

Begin

Beg_Usel:=Beg_Usel+1;

If Beg_Usel=Fin_Usel Then

Div_Res:=(Fn[Fin_Usel]-Fn[Beg_Usel-1])/(Xn[Fin_Usel]-Xn[Beg_Usel-1])

Else Div_Res:=(Div_Res(Beg_Usel,Fin_Usel,Xn,Fn)-Div_Res(Beg_Usel-1,Fin_Usel-1,Xn,Fn))/(Xn[Fin_Usel]-Xn[Beg_Usel-1]);

End; {Div_Res}

Begin {Nuton}

Null(Number,Result);

Null(Number,Temp);

For i:=2 To Number Do

Begin

Recover(Number+1,i-1,Temp,Mat_x);

c:=Div_Res(1,i,Mat_x,Mat_f); {Значение разделенной разности 1 и i-го узлов}

For j:=1 To i Do