Курсовая работа
"Генерация матриц"
В настоящее время матричное исчисление широко применяется в различных областях математики, механики, теоретической физики, теоретической электротехники и т.д.
Целью курсовой работы является разработка алгоритма и написание на его основе программы, которая генерирует квадратную матрицу по ее введенному определителю, размерности и диапазона элементов матрицы.
Данная курсовая работа состоит двух глав, включающих в себя каждая несколько параграфов и подпунктов.
В первой главе приведена теоретическая часть по генерации матриц, включающая основные понятия и определения теории матриц, основные теоремы теории матриц, дающие научную основу для разработки алгоритма генерации матриц и написании на его основе программы. Здесь вводятся основные операции над матрицами и детально изучаются свойства определителей, являющихся основой числовой характеристикой квадратных матриц.
Во второй главе рассказывается об основных проблемах, с которыми столкнулся при составлении алгоритма и написании программы, приводится алгоритм генерации матриц, описываются некоторые важные части программы, основывающейся на алгоритме, и приводится листинг программного продукта.
В заключении говорится о проблемах, с которыми столкнулся при составлении алгоритма и написании на его основе программы, и о путях усовершенствования предложенного алгоритма и программы.
Все определения, теоремы, свойства, следствия и их доказательства, используемые в курсовой работе, взяты из книги В.А. Ильина, Э.Г. Позняка «Линейная алгебра».
Числа m и n называются порядками матрицы. Если m=n, матрица называется квадратной, а число m=n – её порядком.
Для записи матрицы применяются либо сдвоенные черточки, либо круглые или квадратные скобки:
Для краткого обозначения матрицы часто используется либо одна большая латинская буква (например, A), либо символ
Числа
В случае квадратной матрицы
вводится понятия главной и побочной диагоналей. Главной диагональю матрицы называется диагональ a11a22 … ann, идущая из левого верхнего угла этой матрицы в правый нижний её угол. Побочной диагональю матрицы называется диагональ an1a(n-1)2 … a1n, идущая из левого нижнего угла в правый верхний угол.
Перейдём к определению основных операций над матрицами.
Сложение матриц.Суммой двух матриц
Для обозначения суммы двух матриц используется запись C=A+B. Операция составления суммы матриц называется их сложением.
Итак, по определению
=
Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что и операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:
1) переместительным свойством: A+B=B+A,
2) сочетательным свойством: (A+B)+C=A+(B+C).
Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.
Умножение матрицы на число. Произведением матрицы
Для обозначения произведения матрицы на число используется запись C=λA или C=Aλ. Операция составления произведения матрицы на число называется умножением матрицы на это число.
Из формулы (1.3) видно, что умножение матрицы на число обладает следующими свойствами:
1) сочетательным свойством относительно числового множителя: (λμ) A = λ(μA);
2) распределительным свойством относительно суммы матриц: λ (A+B) = λA + λB;
3) распределительным свойством относительно суммы чисел: (λ+μ) A = λA + μA.
Замечание. Разностью двух матриц A и B одинаковых порядков m и n естественно назвать такую матрицу C тех же порядков m и n, которая в сумме с матрицей B даёт матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.
Очень легко убедиться, что разность Cдвух матриц A и B может быть получена по правилу C = A + (– 1) B.
Перемножение матриц.Произведением матрицы
Для обозначения произведения матрицы A на матрицу B используют запись
Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу B:необходимо, чтобы число столбцов матрицы Aбыло равно числу строк матрицы B.
В частности, оба произведения
Формула (1.4) представляет собой правило составления элементов матрицы C,являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: элемент cijстоящий на пересечении i‑й строки и j‑го столбца матрицы C =
В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка
Из формулы (1.4) вытекают следующие свойства произведения матрицы Aна матрицу B:
1) сочетательное свойство: (AB) C = A(BC);
2) распределительное относительно суммы матриц свойство: (A+B) C=AC+BCили A (B+C)=AB+AC.
Распределительное свойство сразу вытекает из формул (1.4) и (1.2), а для доказательства сочетательного свойства достаточно заметить, что если