Например, в ходе проведения эпидемиологического анализа необходимы оценки меры близости эпидемических объектов относительно друг друга. С этой целью в ГИС запускается специальный поисковый процесс, который помогает ответить на вопросы типа: "Сколько домов с больными холерой находится в пределах 100 м от зараженного водоема? Сколько человек проживает или сколько содержится восприимчивых животных не далее 2 км от очага природно-очаговой инфекции? ".
Другой эффективный инструмент эпидемиологического анализа связан с процессом наложения разрозненных исходных данных, т.е. интеграции данных, расположенных в разных эпидемиологических или тематических слоях на общей карте. В простейшем случае - это операция отображения набора эпидемиологических данных на общий ландшафт, что дает новую "синтетическую" информацию по значимости причинно-следственных связей в эпидемиологическом расследовании. Наложение, или пространственное объединение эпидемиологических данных позволяет, например, интегрировать данные о состоянии природного очага, почвах, растительности и динамики посещения очага восприимчивыми людьми и роста заболеваемости населения природно-очаговыми инфекциями.
Визуализация данных. Для многих типов пространственных операций с эпидемическими данными конечным результатом является их представление в виде карт или графиков. Карта - очень эффективный и информативный способ отображения и хранения эпидемической информации. Раньше карты территорий, где были возможны эпидемии или эпизоотии, создавались на длительное время, но ГИС предоставляет новые инструменты, расширяющие и развивающие искусство картографии по каждой конкретной эпидемической ситуации. С помощью инструментов ГИС возможна визуализация самих карт, которые наполняются текущей эпидемической информацией и данными в виде отчетных документов, графиков, таблиц, фотографий и современными мультимедийными средствами.
Далее приводится пример использования некоторых инструментов ГИС при решении задачи прогнозирования эпидемии гриппа на территории России.
Предпосылки моделирования. Грипп передается воздушно-капельным путем и чрезвычайно контагиозен. Дальность рассеивания вируса обычно не превышает 2-3 метра. Непосредственно вокруг больного образуется зараженная зона с максимальной концентрацией мелкодисперстных аэрозольных частиц. Частицы размером 100 мкм и более (крупнодисперстная фаза) быстро оседают. При прямом контакте с источником инфекции в зараженной зоне вирусные частицы аспирируются и задерживаются на эпителии дыхательных путей восприимчивого организма. Инкубационный период болезни (E) в среднем составляет 2 суток, инфекционный (лихорадочный) период (Y) продолжается 2-4 дня, и заболевание заканчивается в течение 8-10 дней (рисунок 2).
Рисунок 2. Схема стадий-состояний развития эпидемии гриппа в городе.
P - население территории;
S - восприимчивые;
E - в инкубации;
I - инфекционные больные;
R - переболевшие гриппом;
F - умершие от осложнений,
МП - воздушно-капельный механизм передачи инфекции.
В ходе изучения эпидемий гриппа XX века была выявлена зависимость уровня заболеваемости населения гриппом от его численности. Наибольшая эпидемическая заболеваемость отмечается в городах с населением в 1 млн. человек и больше, что составляет 11.3% всех случаев гриппа на территории страны. В городах с населением от 500 тысяч до 1 млн. человек эта цифра составляет 10.9%, а с населением меньше 500 тысяч - уже 9.7%.
Математическая модель эпидемии гриппа. Модель отражает динамику развития эпидемии среди населения города при непрерывном заражении лиц за счет воздушно-капельного механизма. Соотношения этой модели представляют систему нелинейных интегро-дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями.
1. Число восприимчивых лиц X(t) среди населения города:
с начальным условием: X(t0) =(1-α) P(t0).
2. Число лиц в инкубационном периоде гриппа:
с начальным условием:
где:
предыстория эпидемии на ее начало.
3. Число новых случаев заболевания гриппом:
4. Число лиц с различными клиническими формами гриппа:
с начальным условием:
где:
предыстория эпидемии на ее начало.
5. Число невосприимчивых лиц или лиц, переболевших гриппом Zr(t):
с начальным условием: Zr(t0) =Zr0=P(t0).
6. Число лиц, погибших от осложнений Zf(t):
с начальным условием: Zf(t0) =0.
7. Граничные условия эпидемии (процесс заражения):
Далее приводятся результаты расчетов по компьютерной модели эпидемии гриппа 1-7, которая отражает развитие эпидемической ситуации в гипотетическом городе с населением в 1 млн. человек при числе восприимчивых порядка 60% (600 тысяч человек) и с летальностью около 1% от числа больных гриппом. Из графиков на рисунке 3 следует, что эпидемия гриппа в этом городе продлится около 2.5 месяцев, при этом гриппом переболеет 534 тысяч человек. Пик эпидемии придется на 43 день и составит 36 тысяч человек. От гриппа в городе может погибнуть до 5.4 тысяч человек.
К ПГ восприимчивы домашние и дикие птицы многих видов. При этом значительные скопления птиц на птицефабриках или высокая популяционная плотность в близко расположенных хозяйствах создают "благоприятные" условия для развития эпизоотического процесса и в связи с этим особенно уязвимы, здесь часто возникают эпизоотии или вспышки высокопатогенного гриппа. С 2003 года в мире отмечено несколько эпизоотических вспышек болезни, при этом от птиц заражались и люди ПГ (см. предыдущую статью В.В. Макарова и др. в настоящем выпуске). Особенно тревожным является появление и распространение высокопатогенного субтипа вируса ПГ H5N1. Именно этот вирус вызывает наибольшую тревогу как потенциальный возбудитель эпидемии гриппа у людей, если у него сформируется механизм передачи инфекционного агента от человека к человеку.
Рисунок 3. Графики развития эпидемии гриппа в крупном городе [характеристики взяты из (1)].
Первые случаи гриппа среди людей, вызванного вирусом ПГ субтипа H5N1, произошли в Гонконге в 1997 году. В той вспышке пострадало 18 человек, все были госпитализированы, при этом 6 из них умерли. Источник инфекции во всех случаях был прослежен специалистами. Установлено, что эти люди имели контакт с больными птицами на фермах (1 случай) и рынках (17 случаев). Ограниченная передача патогенного вируса гриппа типа H5N1 от человека к человеку была зарегистрирована среди сотрудников органов здравоохранения, сельскохозяйственных рабочих на птицефермах и членов их семей. В этой связи представляет интерес вычислительный эксперимент с математической моделью эпидемии гриппа 1-7, в которую нами были "подставлены" условные характеристики вируса типа H5N1 (инкубационный период оценивается от 2 до 5 дней, инфекционный период от 10 до 15 дней, летальность - 30%).
На рисунке 4 приводятся результаты такого эксперимента, которые отражают развитие эпидемической ситуации в городе при числе восприимчивых к ПГ ~ 60% его населения и высокой летальности в 30%. Из графиков следует, что эпидемия гриппа в городе продлится около 2.5 месяцев, при этом переболеет вся восприимчивая часть населения - 600 тысяч человек. Пик эпидемии ПГ придется на 43 день с момента появления патогена, и он составит 53.9 тысяч человек в день. От птичьего гриппа в городе может погибнуть около 180 тысяч человек!
Рисунок 4. Графики развития эпидемии птичьего гриппа в крупном городе (характеристики патогена условны - тип H5N1).
Наибольший интерес для эпидемиологов представляют вычислительные эксперименты с математической моделью процессов распространения гриппа на территории крупных городов страны, связанных между собой транспортной сетью (гражданская авиация).
Модель эпидемии гриппа на территории страны. Эта модель отражает процесс одновременного распространения гриппа среди населения нескольких городов страны (см. рисунок 5). За счет непрерывного движения источников инфекции (лиц в инкубационном периоде) возможны новые случаи заражения лиц из группы риска X(t) в каждом городе. Очевидно, что в каждом случае сформируется своя "локальная" эпидемия, которая будет "подпитывать" другие города за счет постоянной миграции населения между ними.