Наприклад, якщо дано
складаємо (
складаємо (
Перевага такої структури складається в тому, що по-перше, для неї виконується принцип перемішування між підблоками, по-друге, дуже просто реалізується алгоритм дешифрування при ключі, відомому законному користувачу. При цьому важливо те, що функція f(,) навіть не обов'язково повинна мати обернену! Дійсно, коректне дешифрування в даній структурі виконується по тому ж алгоритмі, що і шифрування: Нехай
Тоді
Є багато різноманітних блокових шифрів, заснованих на структурі Файстеля, що відрізняються вибором функції f і засобом формування розширених ключів
Багатократне шифрування блоків.
На перший погляд представляється очевидним, що можна значно підвищити стійкість шифру, якщо криптограму, отриману за допомогою ключа
Проте, нескладно показати, що якщо довжина ключа дорівнює N, те фактично застосування дворазового шифрування збільшує число операцій, необхідних при криптоаналізі за допомогою тотального перебору ключів від 2N до
Метод, що у даному випадку використовується для дешифрування, називається "зустріччю в центрі". Нехай є криптограма
Для криптоаналізу використовуємо напад із відомим повідомленням, рахуючи, що відомо не менше двох блоків повідомлення і відповідні їм блоки криптограми, наприклад,
Рішення задачі будемо шукати шляхом перебору всіх можливих двоїчних ключів
Варіант ключа K | K1 | K2 | Km | Kn | |
| E1 | E2 | Em | | |
| M1 | M2 | Mn | |
З співвідношення
Якщо виповниться і ця рівність то, як правило, знайдені ключі називаються істинними.
Для підвищення стійкості шифрування використовують не подвійне, а потрійне шифрування на трьох різноманітних ключах, тобто формують криптограму по такому правилу
Доводиться, що найкращий можливий метод криптоаналізу за допомогою тотального перебору ключів зажадає в цьому випадку 22N кроків, тобто стійкість криптограми істотно збільшується.