dО1 = αО1∙t. (3.25)
2) отказ задвижки
Отказ моделируется как дополнительный поток через задвижку в соответствии с уравнением:
, (3.26)где Kfmax=1 м3/час – максимально возможный поток задвижку, dОУ2 = {0…1} - величина отказа.
Данный отказ так же может быть рассмотрен как внезапный и зарождающийся. При внезапном отказе величина dО2 измеряется в пределах {0…1}. dО2 = 0 соответствует безотказному режиму работы, dО2 = 1 соответствует максимальному потоку через задвижку в закрытом положении. При зарождающемся отказе:
dО2 = αО2∙t. (3.27)
3.3. Проектирование системы диагностики отказов
3.3.1. Описание системы с отказами
Для решения поставленной задачи первоначально необходимо спроектировать формирователь рассогласования и блок оценки рассогласований.
Для этого все полученные модели рассмотрим в совокупности и получим общее описание системы с отказами.
Рис. 3.3. Система и воздействующие на нее отказы
На вход исполнительного механизма поступает известный сигнал от контроллера u(t). Сигнал uR(t) - управляющее воздействие от исполнительного механизма, поступает на вход объекта управления. Выходной сигнал объекта управления yR(t) непосредственно не доступен и измеряется с помощью датчиков.
Таким образом для целей диагностики известными принимаются входные и выходные векторы системы:
u(t) – известный вход исполнительного механизма;
y(t) – измеряемый датчиками выход системы.
С учетом рассмотренных моделей элементов системы (см. (3.9) – объект управления, (3.11) – исполнительный механизм, (3.12), (3.13), (3.14) - датчики) получим следующее математическое описание системы в переменных состояния:
(3.28)где
, - входной вектор системы – сигнал управления, поступающий с контроллера на вход исполнительного механизма, - выходной вектор системы, - возмущающее воздействие.В качестве возмущающего воздействия рассматривается поток жидкости поступающий в первый бак:
d(t)= Q1(t), м3/час. (3.29)
Вектор состояния системы описывается следующим образом:
, (3.30)где h2(t) – уровень во втором баке, м;
h1(t) – уровень в первом баке, м;
х(t) – положение задвижки, м.
Как указывалось выше, в соответствии с выбранным методом формирования рассогласования необходимо использование линейной модели системы. Поэтому, выполним линеаризацию системы (3.26) в какой-либо рабочей точке.
Для разности уровней в баках h1-h2 = 0.16357,м с помощью программы Vissim 5.0, была получена следующая линейная модель:
(3.31)где
, , , .Данная линейная модель, содержащая внешнее возмущение может быть использована при проектировании рассогласований на основе наблюдателей при неизвестном входе. При использовании наблюдателей состояния необходимо использовать описание системы в форме, не содержащей неизвестных составляющих. В этом случае будем полагать, что поток жидкости, поступающий в первый бак является известной величиной, входящей в вектор управления. Тогда линейная система будет иметь следующий вид:
(3.32)где,
, . Входной вектор системы содержит сигнал управления с контроллера – uk(t) и поток Q1(t): . (3.33)Когда в системе действуют все рассматриваемые отказы датчиков, компонентов и исполнительного механизма, ее модель (3.29) может быть представлена следующим образом:
(3.34)где
- вектор отказа датчиков, , - векторы отказов компонентов системы, описывающие утечку в баке и отказ задвижки соответственно, - вектор отказа исполнительного механизма.Рассмотрим математическое описание векторов, введенных в систему отказов.
Отказы датчиков. В соответствии с уравнением (3.19) датчики подвержены мультипликативным отказам, при которых измерение становится
, а i-ая составляющая вектора отказов может быть переписана так = .Таким образом вектор отказов имеет вид:
где величины отказов δsi для датчиков определяются по формулам (3.20), (3.21):
δs1={-1…1}, δs3= α∙t.
Отказы компонентов системы. В данном случае в качестве отказа компонентов системы рассматриваются протечка в баке 1 и отказ задвижки. В результате этих отказов нарушаются динамические отношения в системе: независимо от входного потока жидкости Q1 и положения задвижки х в установившемся режиме происходит изменение уровней жидкости в баках. Вектора отказов компонентов системы в соответствии с формулами (3.22)-(2.25) могут быть представлены следующим образом:
; (3.36) . (3.37)Отказ исполнительного механизма. Отказ исполнительного механизма, моделируемый в соответствии с уравнением (3.10), связан с изменением параметров системы, и, следовательно, является мультипликативным. Данный отказ может быть описан следующим образом:
. (3.38)Система со всеми отказами может быть описана с помощью общего вектора отказов f(t):
(3.39)где вектор отказов и матрицы распределения отказов имеют следующий вид:
, , .Запишем данную систему с отказами с помощью передаточных функций:
, (3.40)где
(3.41)Получим численные значения данных передаточных матриц для рассматриваемой линеаризованной системы с отказами (4.96):
, (3.42)где
; ; ; ; ; . , (3.43)где
; ; ; .3.3.2. Моделирование отказов в Vissime
При моделировании в качестве имитатора реальной системы будем использовать ее нелинейную модель с дополнительно введенными в нее отказами датчиков, исполнительного механизма и объекта управления. Данная модель, созданная в Vissim 5.0 представлена в приложении В.
При моделировании устанавливаются следующие значения вектора входа и начальные значения состояния (3.26):