Смекни!
smekni.com

Диагностика отказов системы регулирования уровня в баке (стр. 13 из 18)

Реакции этих рассогласований на все рассматриваемые отказы представлены в таблице 3.4. В таблице значение «0» соответствует отсутствию реакции рассогласования на отказ, «1» - рассогласование чувствительно к отказу.

Таблица 3.4.

Сигнатуры рассогласований при различных отказах

Отказы fs1 fs3 fc1 fc2 fa
r1 1 1 1 1 1
r2 1 1 1 1 1
r3 0 1 0 0 1
rs1 0 1 1 1 1
rs3 1 0 1 1 1
ra 0 1 0 0 1

Из таблицы видно, что по сформированным рассогласованиям можно изолировать отказы исполнительного механизма, датчика уровня h2, датчика положения задвижки и отказы системы.

Однако реакция рассогласований на отказы объекта управления (утечка в баке и отказ задвижки) одинакова. С помощью полученных рассогласований изолировать эти отказы невозможно и для выполнения этой задачи необходимо использовать другую методику.

Изоляция отказов объекта управления

В соответствии с пунктом 2.5 для решения поставленной задачи будем использовать нейронную сеть.

Выберем двухслойную нейронную сеть с прямыми связями. Сеть будет иметь 3 входа(рассогласования r1, r2, r3) и 2 выхода. Функции активации нейронов сети установим логарифмическими сигмоидальными. Для обучения используем алгоритм с обратным распространением ошибки Левенберга-Маккварта.

Эта нейронная сеть будет классифицировать образцы рассогласований r1, r2, r3 в соответствии с типом отказа (утечка в баке или отказ задвижки).

Для обучения сети проводится ряд экспериментов: на модели имитаторе системы устанавливаются различные значения величин отказов δc1 и δc2 в диапазоне их изменения, получаемые при этом установившиеся значения рассогласований r1, r2, r3 запоминаются и затем используются в качестве образцов для обучения сети. Кроме того, обучение сети так же проводится на образцах, соответствующих безотказному режиму работы системы.

Построенная сеть имеет два выходных сигнала. Устанавливается, что выходные значения этих сигналов могут изменяться в пределах от 0 до 1. Значение близкое к «0» соответствует отсутствию отказа, значение «1» - отказу. Если на обоих выходах сети устанавливается значение близкое к нулю, то объект управления работает в безотказном режиме. При обучении сети использовалась таблица 3.5.

Таблица 3.5.

Обучение сети

Отказы выход 1 выход 2
утечка в баке 1, fc1 1 0
отказ задвижки, fc2 0 1

На рисунке 3.23 представлены выходы нейронной сети при отказе в баке 1, рисунок 3.24 соответствует отказу задвижки.


Рис. 3.23. Выходы нейронной сети при утечке в баке (внезапный отказ)

Рис. 3.24. Выходы нейронной сети при отказе задвижки (внезапный отказ)

Таким образом, нейронная сеть позволяет изолировать внезапные отказы. При этом задержки при выявлении почти не наблюдается. Реакции сети на зарождающиеся отказы объекта управления (3.23) и (3.25) изображены на рисунках 3.25, 3.26.


Рис. 3.25. Выходы нейронной сети при утечке в баке (зарождающийся отказ)

Рис. 3.26. Выходы нейронной сети при утечке в баке (зарождающийся отказ)

Как видно из рисунков изоляция зарождающихся отказов с помощью нейронной сети выполняется со значительной задержкой. Это связано с тем, что обучение сети выполнялось на установившихся значениях рассогласований при различных величинах отказов

3.4. Диагностика отказов с помощью наблюдателей при неизвестном входе

Использование данных наблюдателей позволяет сформировать сигналы рассогласования устойчивые к неопределенностям системы. В данном случае в качестве таких неопределенностей будем рассматривать ошибки линеаризации и внешнее возмущение Q1(t). Система (3.26) с этими неопределенностями будет иметь вид:

(3.75)

В соответствии с пунктом 4.1.12 все неизвестные входные составляющие представим в виде неизвестного входного вектора:

. (3.76)

Матрицу неизвестного входа Е будем считать известной и равной:

.

Для выполнения диагностики с помощью наблюдателей при неизвестном входе будем использовать следующее описание системы с отказами:

(3.77)

где матрицы А, В, С, R1 и R2 определены при описании системы с отказами (3.26).

3.4.1. Выявление отказов

Для выявления всех рассматриваемых отказов достаточно построить один наблюдатель при неизвестном входе (рисунок 3.26). Проектирование этого наблюдателя выполнено помощью алгоритма, описанного в 2.3.9. На основе этого наблюдателя получим следующий формирователь рассогласования:


(3.78)

Реакции данного вектора на все рассматриваемые отказы представлены на рисунках (3.27)-(3.29). На этих рисунках введены следующие обозначения:

1 – отказ исполнительного механизма;

2 – утечка в баке;

3 – отказ задвижки;

4 – отказ датчика уровня h2;

5 – отказ датчика положения.

Из рисунков видно, что каждый из отказов вызывает

Рис. 3.26. Выявление отказов с помощью наблюдателя при неизвестном входе


Рис. 3.27. Реакция рассогласования r1(t) на отказы

Рис. 3.28. Реакция рассогласования r2(t) на отказы

Рис. 3.29. Реакция рассогласования r3(t) на отказы

3.4.2. Изоляция отказов

Изоляция отказов датчиков

Изоляцию отказов датчиков будем выполнять с помощью формирования группы рассогласований Франка (2.4.2). Для этого в соответствии с процедурой проектирования (2.4.1) построим два наблюдателя:

- наблюдатель нечувствительный к отказу датчика положения задвижки (3.);

- наблюдатель нечувствительный к отказу датчика уровня (3. +1).

(3.79)

(3.80)

Каждый из формирователей рассогласования формирует вектора рассогласования rs1(t)=[ rs11(t); rs12(t)] и rs3(t)=[ rs31(t); rs32(t)]. Для выполнения изоляции отказов достаточно использовать по одному из элементов данных векторов. Выберем в качестве рассогласований:

rs1(t)­=rs12(t)=y1(t)-

. (3.81)

rs3(t)­=rs31(t)=y2(t)-

. (3.82)

Схема изоляции отказов датчиков изображена на рисунке 3.30.


Рис. 3.30. Схема изоляции отказов датчиков

Изоляция отказов объекта управления и исполнительного механизма

Изоляцию отказов объекта управления и исполнительного механизма будем выполнять с помощью нейронной сети.

Выберем двухслойную нейронную сеть с прямыми связями. Сеть будет иметь 3 входа(рассогласования r1, r2, r3, формирователь (3.89)) и 3 выхода, соответствующие трем отказам. Функции активации нейронов сети установим логарифмическими сигмоидальными. Для обучения используем алгоритм с обратным распространением ошибки Левенберга-Маккварта.

Эта нейронная сеть будет классифицировать образцы рассогласований r1, r2, r3 в соответствии с типом отказа (утечка в баке, отказ задвижки или отказ исполнительного механизма).

Для обучения сети проводится ряд экспериментов: на модели имитаторе системы устанавливаются различные значения величин отказов δО1, δО2, и δИМ в диапазоне их изменения, получаемые при этом установившиеся значения рассогласований r1, r2, r3 запоминаются и затем используются в качестве образцов для обучения сети. Кроме того, обучение сети так же проводится на образцах, соответствующих безотказному режиму работы системы.

Построенная сеть имеет три выходных сигнала. Устанавливается, что выходные значения этих сигналов могут изменяться в пределах от 0 до 1. Значение близкое к «0» соответствует отсутствию отказа, значение «1» - отказу. Если на обоих выходах сети устанавливается значение близкое к нулю, то объект управления работает в безотказном режиме. При обучении сети использовалась таблица 3.6.